
Control strategy for

ride-sharing systems by

vehicle routing



Project DIT4TraM
Grant Agreement No. 953783

Start Date of Project 01-09-2021

Duration of the Project 36months

Deliverable Number D3.3

Deliverable Title Control strategy for ride-sharing systems by vehicle

routing

Dissemination Level Confidential

Deliverable Leader Université Gustave Eiffel, Lyon, France

Submission Date 28-02-2023

Author Manon Seppecher

Co-author(s) Caio Beojone, Minru Wang, Mina Khalesian, Nikolas

Geroliminis, Ludovic Leclercq

Release Approval
Name Role Date
Oded Cats Project reviewer 16-02-2023

Lampros Yfantis Project reviewer 16-02-2023

Ludovic Leclercq Task leader 27-02-2023

Nikolas Geroliminis Work package leader 27-02-2023

Document History
Version Description Name
1 Version for internal review among

authors

DIT4TraM_D3.3_v1

2 Version for internal review among

project members

DIT4TraM_D3.3_v2

3 Version ready for realease DIT4TraM_D3.3_final

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement no. 953783



Contents

1 Introduction 5

2 Related works 7

2.1 Centralized approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Decentralized approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Auctioning for dispatching and rebalancing . . . . . . . . . . . . 8

2.2.2 Driver incentives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Customer incentives and pricing . . . . . . . . . . . . . . . . . . . 9

3 Demand estimation for mobility

services 10

4 Rebalancing strategies 14

4.1 An auctioning-based approach for ride-hailing fleet rebalancing un-

der uncertainty (UGE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.2 Main assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.3 Vehicle-to-Infrastructure auctioning scheme . . . . . . . . . . . 16

4.1.4 Relocation offers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.5 Utility functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Multi-layer vehicle repositioning (EPFL) . . . . . . . . . . . . . . . . . . 23

4.2.1 Main assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.2 Upper-layer controller . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.3 Middle-layer controller . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.4 Lower-layer controller . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Rebalancingwith in-servicevehicles through incentives for ride-splitting

(EPFL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.1 Main assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.2 Matching description for pool trips . . . . . . . . . . . . . . . . . . 30

4.3.3 Pricing and passenger choice attributes . . . . . . . . . . . . . . . 30

5 Methods comparison 32

5.1 Case study description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.2 Demand balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.3 Network specification . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.4 Request generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.5 Network partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.6 Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Comparative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 Selected KPIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.2 Algorithms comparison . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 DIT4TraM_D3.3_final



5.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Conclusion 50

Publications for D3.3 52

References 53

4 DIT4TraM_D3.3_final



1 Introduction

Over the last decade, on-demand mobility services have drastically transformed

urban transportationecosystems, drivenby the riseofnewtechnologies, especially

mobile networks, and terminals. The offer hasmultiplied, withmany Transporta-

tion Network Companies (TNCs) appearing on the market, competing with tradi-

tional taxi companies and providing travelers with a vast range of services. These

services canmeet an increasingly dynamic and irregular mobility demand, unsat-

isfied by public transportation or personal car constraints. On the one hand, ride-

sourcing services offermore flexible services than public transit, on-spot and on-

demand pickup, and no connections. On the other hand, it can be less costly than

private car ownership and provides satisfying solutions to parking issues.

These individual benefits extend to a collective scale, at which the limitation of car

ownership can relieve the pressure on land and the need for parking spaces. By en-

couraging pooled trips through ride-splitting, these services can reduce road traf-

fic and its externalities: participation in urban congestion, air emissions, or noise

pollution. Yet, effective management of this type of service requires successfully

handling several operational issues: demand prediction, ride-pricing, passenger-

vehicle matching, vehicle routing, and fleet rebalancing. The present document

discusses this last issue.

Urbanmobility dynamics andasymmetry are someof themajor issues inmanaging

on-demandmobility services. Without fleet rebalancing strategies, vehicles accu-

mulate in the most attractive areas of the network, to the detriment of the high-

demand regions. The satisfaction of new requests may require vehicles to travel

long distances to pick them up, implying substantial waiting times for the users.

These waiting times affect the attractiveness and performance of the service.

On the contrary, anticipating future demand and relocating the fleet accordingly

ensures high service levels to users and minimizes abandonment rates. Thus, two

questions arise: how to predict ride-sourcing demand and how to reorganize the

fleets accordingly? This paper addresses the latter issue, but we dedicate a pre-

liminary part of our discussion to the former by introducing researchwork by Uni-

versité Gustave Eiffel within the DIT4TraM project on the specific topic of demand

formobility services. Themethod and results briefly presented serve as amethod-

ological foundation for some fleet management strategies described later in the

report.

While rebalancing decision-making has long been explored using centralized ap-

proaches, the research teams at EPFL, Lausanne, Switzerland, and Univ. Gustave

Eiffel, Lyon, France, have developed several distributed rebalancing strategies de-

scribedandcompared in thisdocument. Themethodsdevelopedcovera large range

of methodological approaches. They include:

• An auctioning-based approach to dispatch idle vehicles based on the outcome

of a distributed two-sided matching process;
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• A hierarchical distributed control strategy to reorganize fleets at the micro-

scopic andmacroscopic scales;

• A pricing scheme to rebalancing vehicles through targeted ride-splitting.

A substantial effortwasmade to build a joint case study to simulate these strategies

for thefirst time in the sameenvironment. The city of Lyon, inFrance,was selected

as a common test case.

This joint analysis evidencesageneral increase in thenumberofpassengers served,

while some of the proposed strategies also reduce passengers waiting time. These

strategies also generally contribute to increasing the average service distance of

vehicles and decreasing their idle distances. This comparison also allowed identi-

fying the weaknesses of the methods. We discuss them carefully and propose dif-

ferent directions to address them.

This document is organized as follows:

• Section 2 presents the fleet rebalancing related literature;

• Section 3 introduces research conducted on demand estimation for mobility

services, developed as a methodological foundation for the development of

sound rebalancing strategies;

• Section 4 presents the three rebalancing strategies proposed;

• Section 5 presents the comparison of the rebalancing strategies. It describes

the case study and presents and discusses the performances of each strategy.

• Section 6 wraps up this document with a discussion of the results achieved

and future research conducted as part of this task.
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2 Related works

2.1 Centralized approaches

Many articles on fleetmanagement in general (routing, dispatching and rebalanc-

ing) of ride-sourcing fleets have addressed these issues via centralized methods.

The objective of optimal vehicle dispatching is to serve known (present or future,

i.e. pre-booked) requests in a way that satisfies an objective, i.e. minimizing the

total distances traveled, the costs, the waiting time of passengers, the number of

unsatisfied requests ormaximizing the number of shared-trips in the case of ride-

splitting.

Several rebalancing strategies emerge from the optimization of passenger-driver

matching algorithms. These strategies include [1], [2], and [3] who sent empty ve-

hicles to the location of recently unsatisfied customers. However, the issue with

these strategies is their reactive nature, in the sense that they mainly accounted

for past events (i.e., lost demand) or current conditions. For instance, if an area

faces recurrent losses of requests, customers will likely change their travel option

to a more reliable transportation mode.

More recent studies try to take centralized actions before losing these passengers.

By introducingdemandanticipation, the search for theoptimal dispatchinggradu-

ally turns to proactive rebalancing problems. Model Predictive Controllers (MPCs)

are then either used to definewhere each vacant vehicle should relocate [4], or how

many vehicles should relocate from a region i to a region j [5]. In ride-splitting

context, [6] build on thenotion of feasible shared trips and leverage future demand

prediction in vehicle routing and vehicle assignment. [7] uses coverage control to

proactively position idle drivers in areas more likely to originate new requests. [8]

uses an MPC to relocate idle taxis in a macroscopic set of regions. However, al-

though highly optimized and proactive, these approaches assume complete com-

pliance to the provided instructions. Hence, they ignore that the objectives of in-

dividual humans offering rides, or they assume that the TNC owns a completely

autonomous fleet. These strategies also make the systems using them vulnerable

to failures or communication interruptions, and rigid in the face of possible com-

petition from other mobility services.
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2.2 Decentralized approaches

2.2.1 Auctioning for dispatching and rebalancing

Anearlyworkon thedistributedmanagementof ride-splittingfleetwithademand-

initiated negotiation scheme is the work of [9]. The authors propose a peer-to-

peer ride sharing system in which several types of agents are considered: clients

can bemobile or immobile, while vehicles can be either private cars, taxis, ormass

transit vehicles. Agents communicate with each other within a limited distance

range. The customers send trip requests, to which hosts can respond by making

service offers. Customers then select the best offer among the offers proposed.

More recently, a similar approach was developed in [10]. In that framework, if

vehicles have free seats, they answer to ride requests by notifying the passenger

with the offered route, detour and travel time. Otherwise, they transfer the request

to other near-by drivers in a peer-to-peer manner. Again, based on the different

offers from the drivers, the rider picks the driver that optimize a multi-objective

function.

In [11], the authors propose another agent-based approach for modeling the ride-

splitting problem, inwhich the negotiation process is initiated by the vehicleswith

vacant seats. Instead of considering potential passengers in their close proximity,

they consider and interactwith newpassengers located along their planned routes.

The authors explore different negotiation scheme settings: one-driver-one-rider,

one-driver-multi-riders, and themulti-hop ride-splitting problem. Still, the ne-

gotiation process is similar to the previous ones, with drivers placing bids on the

least expensive ride request, and riders accept the bid with the lowest passenger

cost.

Generally speaking, themethodsdiscussedabove, althoughveryconstructive, can-

not be proactive because they involve the passenger in the matching and pick-up

repositioning process. As long as the passenger has not appeared, the vehicle re-

mains idle without relocating directions. Therefore, to integrate proactive rebal-

ancing in a negotiation-based fleet management requires either:

1. agents to have intrinsic relocating strategies;

2. or the use of a third-party infrastructure agent.

In [12], authors explored the first option and developed a method for decentraliz-

ing taxi decisions in case of a central service shut-down. The second option has, to

the best of our knowledge, not been sufficiently investigated yet. While distributed

trafficmanagement relies extensively on local controller agents (traffic lights and

intersection controllers), few studies have considered infrastructure agents in the

ride-hailing and ride-splitting management problems. [13] propose a decentral-

ized ride-splittingmatching systembasedonvehicle-to-infrastructure and infra-

structure-to-infrastructure communication scheme,with infrastructurebeing lo-

cated at road intersections. This approach still does not address fleet re-balancing
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and raises concerns regarding the possibility to scale themethod to large road net-

works over global urban areas, which may contain thousands of intersections.

2.2.2 Driver incentives

In the literature, a few efforts acknowledge the impossibility of ride-sourcing ser-

vice operators deploying or dispatching extra vehicles whenever there is a short-

age. In reality, they must be persuasive enough to convince the available pool of

drivers to relocate. The works of Lu et al. [14], Sadeghi and Smith [15], and Powell

et al. [16] incentivizeddrivers todecideon thebest location for thenext assignment

throughmechanisms that control the supply of drivers and the demand of passen-

gers, such as surge pricing [17]. These strategies also suffer from a reactive nature.

Drivers face high uncertaintywhether an area previouslymarked as ‘high demand’

or ‘surge price multiplier’ will be crowded with incoming vacant vehicles, result-

ing in longer cruising times. Such a problem also emerges because these strategies

only provide limited information for drivers (in terms of time and scope), in which

case they must estimate themselves what the most profitable option is.

2.2.3 Customer incentives and pricing

Ride-sourcing systems benefit further from ongoing developments in the shared

economy. Besidesdriver-based relocation strategiesdiscussed inprevious section,

where vehicle relocation is carried out by staffanddrivers, one can also identify re-

search directions that develop user-based pricing strategies. Earlier research ef-

forts on users’ origin and destination flexibility [18], user-based relocation in car-

sharing systems [19], and surge-pricing for ride-sourcing systems [17] demon-

strate the potential of tapping into users flexibility in their travel options, as a way

to achieve operational goals such as more balanced supply, increased profit, and

more attractive service level overall for passengers. Although both aimed at equi-

librating demand and supply, surge pricing differs from incentives due to the for-

mer’s commonly profit-maximization objectives; customerswhosewillingness to

pay is lower are dissuaded fromusing the ride-sourcing platform, and adopt alter-

native travel modes instead. In contrast, the objectives of user-based incentives

are commonly service-driven rather than revenue-oriented. From the customers’

perspective, if the lowered price makes the platform appear more attractive with-

out incurringexcessivedetour, theplatformcan likely retainmorecustomers com-

pared to the surge pricing case. However, the incentives need to be well-designed

to prevent platform revenue loss and account for the uncertainty in user prefer-

ences.
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3 Demand estimation for mobility

services

Before presenting developments on fleet rebalancing strategies, this section dis-

cussesdemand forecasting, a critical dimension forproactivemanagementof ride-

sourcing services. It briefly presents recent studies on demand forecasting, then

reviewsamethoddesignedwithin theDIT4TraMproject topredictdemand formo-

bility services [20]. The methodological features and results are summarized and

presented at the end of this section as the approach supports the methodological

foundation of specific strategies presented in Section 4.

Mobility services require accurate demand prediction both in space and time to ef-

fectively accomplish fleet rebalancing, provide efficient on-demand transporta-

tion services, and manage advanced ride-splitting with minimum fleet sizes. Al-

though the optimization of mobility services is a widely studied topic, the critical

component of demand prediction has received less attention. New mobility ser-

vice operations impose new challenges for demand prediction, as high resolution

is needed both in space - at large-scale - and in time - at short-term tomid-term

(e.g., next fifteen minutes or next hours) - to effectively perform fleet sizing and

rebalancing.

Predicting traffic demand throughout a city can help car-sharing companies pre-

allocatemore cars in high-demand regions or help taxi centers tomanage floating

taxis by incentivizing vacant vehicles to move from the over-supply regions (the

zones with more potential vehicles) to over-demand ones (the zones with more

potential passengers) in advance. The same demand-supply imbalance exists in

mobility-on-demandservices suchase-hailing taxis,whichhavegainedgreatpop-

ularity in recent years. Traffic demand forecasting can help to dispatch cars effi-

cientlyandconsequentlyminimize thewaiting time forbothpassengersanddrivers

[23], [21], [22].

Trafficdemanddatavarieswith timeandspaceandhascomplicatedspatial-temporal

dependencies. Regarding time dependency, the traffic demand is expected to be

high during peak hours (morning and evening peaks) and low at night (sleeping

hours). Furthermore, the traffic in each zone depends not only on the historical

traffic of that zone but also on the traffic of all the other zones in the whole area of

interest, with a stronger impact from nearby zones than distant ones [24], [25].

Traffic demand prediction approaches can be divided into three categories. The

first category is the statistical methods [27], [26]. Historical Average (HA), Auto-

Regressive IntegratedMovingAverage (ARIMA), andVectorAuto-Regressive (VAR)

are the most well-known statistical methods found in the literature. These algo-

rithms are easy to be deployed but only applicable to relatively small data sets, and

the capability of these approaches to deal with complex and dynamic traffic de-

mand data is limited [28]. Traditional machine learning methods [32], [29]–[31]

constitute the second category. Thesemethods, such as Support Vector Regression

(SVR) and Random Forest Regression (RFR), can process high dimensional traffic
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data and capture non-linear relationships.

However, with the advent of deep learning methods [33], [34], [24], [22], which

comprise the third category, the full potential of Artificial Intelligence (AI) has

been utilized in traffic-related prediction applications [35]. Several deep learning

architectures, such as Convolutional Neural Network (CNN), Graph Convolutional

Network (GCN) [36], Recurrent Neural Network (RNN) [37], and its variants like

Long Short-Term Memory (LSTM) [38] or Gated Recurrent Unit (GRU) [39], have

been used for traffic prediction - see [28] for amore extensive survey. In the liter-

ature, there are some approaches that have used deep learning for traffic demand

predictions [23], [21], [24], [22], [40].

In [40] a feature-level data fusionmodel is investigated, which integrated the fea-

ture attributes into long short-termmemory (LSTM), to predict day-to-day travel

demandvariations basedon theorigin-destinationmatrices data of 30 consecutive

days on a large-scale transportation network. [22] proposed a sequence learn-

ing model based on LSTM for predicting taxi demands and showed that this ap-

proach outperformed the feed-forward neural network and naive statistic aver-

age predictor. In [24], a deep learning (DL) approach named fusion convolutional

long short-termmemory network (FCL-Net) was employed by the fusion of con-

volutional techniques and LSTMnetwork to predict short-termpassenger demand

for an on-demand transport service. [23] proposed a multi-task deep learning

(MTDL) model based on LSTM to forecast short-term taxi demands at a multi-

zone level. The proposed model was able to predict the demand of multiple zones

simultaneously in away that the demand prediction of each zone can be conducted

by considering the information of zones that can help to improve the prediction.

Traffic demand characteristics change at different levels of temporal and spatial

aggregations. The aggregation level in the temporal or spatial dimension could af-

fect the prediction accuracy so that aggregating in a longer timewindowor inmore

extensive areas results in smoother time series and therefore facilitates pattern

identification. However, aggregating in a longer time window or in more exten-

sive areasmay cause losing some important information at higher frequencies and

remarkably diminish the accuracy. Therefore, finding the right balance is note-

worthy [42], [44], [41], [43] and appropriate aggregation in the spatial and tem-

poral dimensions can be used to improve prediction accuracy.

To tackle this problem, we propose an approach that uses hierarchical time series

and reconciliation concepts in combinationwith a deep learningmethod. A hierar-

chical time series (HTS) is a collection of time series organized in a hierarchical ag-

gregation structure. Forecast reconciliation is the process of improving prediction

accuracy by adjusting the forecasts to make them coherent across the hierarchy.

This coherence can be checked at the spatial or temporal levels in time-series data

related to traffic demand. For example, at the temporal level, the traffic demands

at every hour of a day should add up coherently to give the diurnal traffic demand,

or at the spatial level, the forecasts of traffic demand in initial traffic zones (here

Traffic Analysis Zones (TAZ)) should add up to provide the forecasts of more ex-

tensive areas constructed based on initial traffic zones (here the zones designed to

meet the requirements of mobility service operations).
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In recent years, hierarchical time series and reconciliation have attractedmuch at-

tention [45], [46]. However, aggregation in spatial and temporal dimensions has

not been considered widely in the transportation field. [42] used a component-

wise gradient boosting procedure (CWGB) combined with hierarchical reconcili-

ation to predict traffic flow. In our research, an LSTM approach in combination

with hierarchical reconciliation (HR) is proposed for short/mid-term traffic de-

mand forecasting. The proposed approach has three main features that make it

different from the previous studies:

• The demand prediction for a specific area can be adjusted based on the de-

mand forecasting of a group of regions at different aggregation levels (spatial

levels) and the forecasts in different time resolutions (temporal levels). The

main advantage of this feature is that it simultaneously provides the possibil-

ity of forecasting demand in different regions with different dimensions and

travel times.

• The approach is based on a deep learning technique, here LSTM, combined

with an innovative application of HR. Based on this feature, HR improves the

initial forecasts resulting from the deep learning method in such a way that

the predicted demands for all zones are coherent and consistent with each

other.

• The deep learning technique and the HR step are linked together via an error

analysis, which can control the solutions to be in a true feasible space and can

finally provide uswith the expected precision of the forecasted demands. This

feature, by providing the prerequisites of hierarchical reconciliation, allows it

to be implemented in themost optimalwayand thebehavior of demanderrors

can be controlled more accurately.

In this research, we consider two specific spatial partitioning levels: the initial one

consists of homogeneously populated areas based on census data, and the sec-

ond one is the aggregation of these zones into larger areas that still fulfill a maxi-

mumservice time criterion formobility services. In short, the later areas should be

large enough to allow robust demand predictions but small enough to allow pre-

positionedvehicleswithin thearea to serveany internal requestswitha lowwaiting

time for passengers. In the proposedmethod, apart from adopting a deep learning

technique for demandprediction, themain idea is that all the predicted demands in

all zones and regions of the mentioned partitioning levels should be adjusted and

matchedwith eachother in thehierarchical tree structure that is constructed based

on these partitioning levels.

In brief, the proposed approach is comprised of three main stages. The aims and

ideas of these stages are as follows:

1. Deep learning: This step of the proposed approach provides initial demand

predictions for the spatial partitioning levels. In this step, in addition to his-

torical demand data, utilizing other information about the demand as ad-

ditional input (e.g., external features of time, i.e., time-of-day and day-of-
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week) can be beneficial to network training.

2. Error analysis: The main idea behind this step is to validate and control the

initial forecasts provided by the deep learning step. The initial forecasts can-

notbedirectlyusedby thehierarchical reconciliation, and their randomerrors

need to be investigated and controlled. One of the main outputs of the error

analysis is the weightmatrix, which is essentially required by optimal recon-

ciliation. Meanwhile, the error analysis step leads to the projection matrix,

which provides the proposed approach with a filtering. By means of the pro-

jection to the feasible space of solutions, the filtering avoids the initial fore-

casted time series diverging from the true solutions.

3. Optimal reconciliation: the main idea behind this step is to optimally adjust

andmatch all the demands with the hierarchical tree structure of zones. This

step leads to coherent forecasts of the demands in all levels of theHierarchical

structure.

We evaluate the proposed approach on a large-scale GPS tracking dataset of Lyon

in France. The proposed method reduces the root mean square error (RMSE) by

13.92% and 14.77% for the predefined and aggregated zones, respectively, com-

paredwith the LSTMusing the historical demand and the external features of time

(time-of-day and day-of-week) at fifteen minutes time resolution. Similarly, the

corresponding improvement formeanabsolute percentage error (MAPE) is 14.87%

and 19.23%, respectively.

Furthermore, as an example, in Fig.1 the forecasted values of the demand, obtained

by the proposed method, and the true values of the demand have been illustrated

for three aggregated zones with the highest values of demand. This figure shows

how the results obtained by the proposed approach are in a good agreement with

the ground-truth values.

Figure 1: The forecasted demands and true ones of three zones possessing the
highest values of demand amongst the other zones, for the time step equal one

hour
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4 Rebalancing strategies

We propose three different fleet rebalancing strategies.

The first strategy (M1, Section 4.1) relies on an auctioning-based approach and

the rebalancing of vehicles according to the outcome of a distributed two-sided

matching process. It is based on the division of the network into service areas su-

pervised by controllers interacting with the mobility service vehicles. It has been

designed to allow for the management of different fleets of competing mobility

services, and to integrate different types of uncertainties, concerning demand, but

also traffic conditions and vehicle travel times. To date, thismethod has only been

applied in a ride-hailing context, but it has been designed to be extendable to ride-

splitting operation settings.

The second strategy (M2, Section 4.2) proposes a hierarchical control of the re-

location of idle vehicles. At the upper layer, an aggregated model and a model

predictive control framework are used to assess the number of vacant vehicles to

relocate from one region to another. At a finer scale, a coverage control scheme

aims at distributing vehicles according to the demand density within each region.

This approach helps bridging the gap betweenmacroscopic and proactive fleet re-

balancing and microscopic vehicle management, providing an alternative to dis-

tributing the rebalancing task to each area of a city. Themethod is adapted to ride-

hailing and ride-splitting operating modes, and both are discussed in the result

section (Section 5).

The final strategy (M3, Section 4.3) uses ride-splitting as a fleet rebalancing strat-

egy. Instead of having solo-riders and the vehicle they were matched with end up

in low demand areas, ride-splitting can be used to have vehicles have their final

drop-off in a high demand area. This approachmay be an alternative to increasing

the size of the fleet that would otherwise be necessary to meet demand. As pooled

trips can be considered as less attractive than solo trips, the ride-splitting service

can apply monetary incentives on the ride prices to increase their attractiveness.

Together, these approaches explore a large range of different strategies to rebal-

ance the fleet of a ride-sourcing service.
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4.1 Anauctioning-basedapproach for ride-hailing

fleet rebalancing under uncertainty (UGE)

4.1.1 Introduction

The first fleet management strategy for on-demand mobility services focuses on

distributing empty vehicles on the urban network. We design a decentralized deci-

sion architecture consisting of amesh of controllers that divide the urban network

into an equal number of service areas. These agents are considered to be at the

service of a public authority (e.g., a transport agency or a local authority) and aim

to satisfy their local demand as fast as possible. These controllers can be coupled

with physical infrastructures, such as parking lots or depots for vacant vehicles.

Note that the work presented in this deliverable assumes that the vehicles belong

to a single mobility service. We will explore later a case study including different

competing mobility services in connection with WP5.

Toguarantee the fastpick-upof the localdemand, thecontrollers arefirst in charge

of predicting the number of travelers requesting a ridewithin the service area. This

prediction can be based on local demandhistory and knownpre-booked requests if

any. This prediction allows controllers to estimate the number of vehicles needed

to meet local demand and to implement a negotiation process with cars to attract

the required number.

These negotiations between vehicles and controllers are done simultaneously and

in a decentralized way through a two-sided matching market. Vehicles apply to

their favorite relocation offer, i.e., the offer that will maximize their expected rev-

enue, while controllers aim at ensuring the fastest service for the local passengers.

This reconciliationmay require several iterations of the process, with vehicles that

have been rejected by their preferred region applying for the next one. At the end

of this process, vacant vehicles are assigned to a service area to which they will re-

locate. Figure 2 illustrates this communication protocol.

Note that although themanagementof rebalancing isoutsourced fromthemobility

service to a public authority, we consider that the mobility service keeps theman-

agement of the matching and routing of its passengers (not represented in Fig-

ure 2). It is assumed at this point that ride-hailing services and vehicles comply

with the outcome of this process. Future work could examine how non-compliant

services and vehicles can alter system performance.
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Figure 2: Communication protocol between travelers, controllers, and vehicles

4.1.2 Main assumptions

Themain assumptions supporting our method are:

1. Local controllers can predict the local demand and its uncertainty based on

historical data (supported by results of Section 3), aswell as the average zonal

revenue;

2. They publish relocation offers with a probability higher than a pre-defined

threshold;

3. Vehicles utility is based on expected revenue and rebalancing costs;

4. Controllers utility is based on the vehicles arrival time;

5. The auctioning process is truthful;

6. The mobility services and their fleet comply with the rebalancing directions.

4.1.3 Vehicle-to-Infrastructure auctioning scheme

Therebalancingstrategydevelopedat theupper-level reliesonanauctioning frame-

work, involving local controllersnegotiatingwithvehicles for the attributionof re-

location options. On the one hand, local controllers aim at maximising the satis-

faction of their future local demand byminimising their waiting time before pick-

up. On the other hand, vehicles aim at relocating towards area that will maximise

their net profit, i.e. minimise their relocation costs andmaximise their service in-

comes.

The auction framework is based on the distributed Gale-Shapley algorithm.

We summarise below the outline of our algorithm:

• Local controllers predict the future local demand (potential future passengers),

and deduce from it their future vehicle needs. They express those needs by

publishing relocating options into a two-sided relocatingmarket. Each relocat-
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ing option is associated with the likelihood that the demand will occur.

• With a fixed frequency, vacant vehicles can enter the market and evaluate for

each relocating option their own utility. Vehicles estimate this utility by con-

sidering their relocation costs towards the service area, the likelihood of the

demand associated with the relocating options, and the incomes expected for

serving this demand. On this basis, the vehiclesmake anordered list of the re-

location options they consider useful, and bid on the first one. When bidding,

vehicles declare their expected arrival time at destination.

• Local controllers agents gather the bids of vehicles, and evaluate for each the

waiting time imposed on the future passenger. For each potential passenger,

regions accept the best vehicle’s bid and reject the others.

The auctioning process continues in an iterativeway until rejected vehicles run out

of bids. This process is further described in Algorithm 1.

4.1.4 Relocation offers

Thepurpose of the auctioninggamebetween service areas andvehicles joining is to

allocate relocation offers, published by service area agents in charge of their pre-

diction. Let i be a service area, T a time period, and k an integer index. We note rki,T
the kth relocation offer of region i for period T , defined as the tuple rki,T = (pk, ĝki,T )

with:

• pk the occurrence probability of the kth most probable ride request in i during

T;

• ĝki,T the expected income from serving the corresponding potential passenger.

In this paper, we will assume gki,T is independent of k and T , therefore g
k
i,T = gi.

Hereafter we describe those relocation offers and their components. For readabil-

ity, we will hereafter also use k to designate the relocation offer rki,T .

4.1.4.1 Occurrence probability pk

Let i denote a service area and T a prediction period.

The local total demand (or total number of ride requests within i) for period T is

modelled as a random variable Xi,T . We assume that this total local demand Xi,T

follows a normal distribution:

Xi,T ∼ N(µi,T , σ
2
i,T ) (1)

with µi,T and σi,T be predicted from historical analysis of the data.

Relocation offer generation emerges from the breakdown of the demand distribu-

tion into demand units, each representing a possible additional customer. These
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Algorithm 1: Rebalancing algorithm

1 foreach i ∈ service areas do
2 Gather booked rides;
3 Predict and split-up future demand;
4 Publish related rebalancing offers into the matchingmarket;

5 foreach v ∈ idling vehicles do
6 l← [] foreach i ∈ service area do
7 ci ← compute_rebalancing_cost(v, i);
8 foreach T ∈ in horizon periods do
9 foreach relocation offer rki,T do
10 Uv(k)← get_utility(rki,T , ci) (See Section 4.1.5.1)

11 l← [l, Uv(k)]

12 l← descending_sort(l);

13 while ∃ unmatched driver with non empty application list do
14 foreach unmatched driver with non empty application list do
15 Driver applies to most preferred rebalancing option;

16 foreach rebalancing option do
17 Compute bids utilities (See Section 4.1.5.2)
18 Select best bid;
19 if option is not matched yet then
20 Match with vehicle;
21 Reject all others;
22 else
23 if utility of best bid outperform current utility then
24 Unmatch current driver ;
25 Match with best bidding vehicle ;
26 Reject all others;
27 else
28 Reject all applying vehicles;

29 foreach unmatched driver do
30 Remove previous application from application list;
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(a) Without booked rides (b) With booked rides

Figure 3: Demand prediction split-up

demand units are characterised by an occurrence probability pk, so that:

∀k ∈ N, pk = SXi,T
(k) = P (Xi,T ≥ k) (2)

where SXi,T is the survival function ofXi,T . Hence, pk describes the probability that

at least k ride requests will occur during T in the considered service area.

In theory, local controllers can generate asmany offers as theywish. But the prob-

ability of each additional request is lower than the previous one, and therefore less

interesting for bidding vehicles. In practice, we define a probability threshold p0 ∈
[0, 1] and assume each local controller publishes on the relocating market only the

kmax relocating offerswith occurrence probability above p0. Figure 3a illustrates the

partitioning of the predicted future demand into uncertain requests.

Case of pre-booked rides

Additionally, we consider passengers can book rides in advance. Upon the recep-

tion of kbooked pre-booked ride requests for a period T , the local controller can safely

publish on thematchingmarket kbooked certain ride requests. It still needs to assess

the likelihood of additional requests appearing in real time knowing that

Xi,T ≥ kbooked:

∀k ∈ N, pk = SXi,T |kbooked(k) = P (Xi,T ≥ k|Xi,T ≥ kbooked) (3)

=
P (Xi,T ≥ k ∩X ≥ kbooked)

P (Xi,T ≥ kbooked)
(4)
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If k ≤ kbooked, we retrieve:

SXi,T |kbooked(k) =
P (Xi,T ≥ kbooked)
P (Xi,T ≥ kbooked)

= 1 (5)

On the contrary, if k > kbooked:

SXi,T |kbooked(k) =
P (Xi,T ≥ k)

P (Xi,T ≥ kbooked)
=

SXi,T (k)

SXi,T
(kbooked)

(6)

Then, SXi,T |kbooked(k) can be easily derived from Equation 1. Figure 3b illustrates the

demand split-up with booked requests.

4.1.4.2 Income estimation ĝi

Besides request probability, controller agents share to drivers the average income

theycanexpect fromservingapassenger fromthecorrespondingservice area. This

way, vehicles evaluate and compare their utility in relocating towards one region

or the other. In a real-world context, this information can easily be derived from

historical data. Assuming the ride pricing scheme cride is distance-based, as of-

ten implemented in the literature, here we build up a simple proxy for historical

data to estimate this average local income information. It is based on shortest-

path informationbetween regions dSP (i, j), ride-pricing function cride and standard

origin-destinationmatrixM = (mi,j):

ĝi =

∑
jmi,j · cride(i, j)∑

jmi,j
(7)

4.1.5 Utility functions

The auctioning process involves that, in turn, vehicles evaluate their utility in ap-

plying to one or the other relocation offer, and regional controllers evaluate the

utility of these applications for the expected passengers. Below are described the

details of those computation process.

4.1.5.1 Utility of vehicles

Vehicles compute their utility Uv(i, k) in relocating towards region i to serve poten-

tial passenger k as the net profit of the rebalancing, i.e. as the difference between

their expected earning g(i, k) and the relocating costs crebalancing(v, i):

20 DIT4TraM_D3.3_final



Figure 4: Utility function of local controllers

Uv(i, k) = g(i, k)− crebalancing(v, i) (8)

The rebalancing costs are computed as the product of the vehicle’ mileage cost ckmv
with the relocating distance from current position p to region i following shortest-

path dSP (p, i):

crebalancing(o, i) = ckmv · dSP (p, i) (9)

We take into account the risk that the ride request does not occur. Therefore, the

expected gain ḡi (cf. Equation 7) is weighted by the probability of occurrence of the

query (cf. Equation 2). We define g1(i, k) as:

g1(i, k) = ḡi · SXi,T
(k) (10)

4.1.5.2 Utility of local controllers

We plan to explore different controllers utility function to identify which vehicles

satisfy the best their objective to limit the waiting time of their own customers.

These utility function can take into account uncertainty related to the passengers

and vehicles arrival time. Yet, to compute the results presented in this document

we use a simple utility computation process. Within the rebalancing period, the

local controller randomlydrawsa timeatwhich thepredictedpassenger is assumed

to arrive. Then, each vehicle application is evaluated depending on the predicted

delay of the bidding vehicle, as illustrated in Figure 4. This utility function can

be evaluated in light of the number of matched passengers. Sensitivity analyses

will allow to calibrate it in amore refined way, in order tomaximize the number of

passengers served.
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4.1.6 Summary

To summarise, we design an auctioning-based rebalancing framework which re-

lies on the external control of vehicles’macroscopic rebalancingby cross-platform

service area agents. At each rebalancing time step, local controllers gather pre-

booked rides, predict the overall future demand and publish relocation offers on a

two-sidedmatchingmarket. Idle vehicles bid on their most profitable option, and

controller positively or negatively answer depending on the capacity of vehicle to

arrive on time to satisfy the anticipated customer. Rejected vehicles apply to their

second most profitable option, while regions may reject already accepted offers if

they receive a more useful one. The outcome of this matching process determines

how vehicles should rebalance over the planning horizon. In-between two reloca-

tion periods, idle vehicles are open to matching with new ride requests occurring

in their nearby environment.

Futuredevelopmentsof thismethodologywill include theexplorationofmorecom-

plex utility functions and advanced sensitivity analysis to uncertainty levels and

number of relocation published. In the long run, this approach will be used to de-

vise local incentive strategies to encourage vehicles to relocate in service areas suf-

fering from lower accessibility or uncertain demand. We will also explore the per-

formances of this method to manage the rebalancing of multiple competing mo-

bility services in connection with works conducted in WP5. In particular, it may

be possible to assess how these third-party controllers can mitigate competition

to promote equity among operators of different fleet sizes. We will also look at

enriching the method to foster cooperation between local controllers rather than

competition.
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4.2 Multi-layer vehicle repositioning (EPFL)

We propose a hierarchical control strategy for the relocation of idle ride-sourcing

vehicles, and in specific for addressing the gap between proactive repositioning

strategies and micro-management of vehicles in such activities. The upper layer

utilizes an aggregatedmodel, which is an approximation of trip-basedMFDmod-

eling approach (building on [47]). A model predictive control (MPC) framework is

employed to determine the number of idle vehicles to be relocated for each pair

of regions. Unlike perimeter control MPC methods, fleet management MPC re-

quires the integration of more sophisticatedMFD-basedmodels describingmixed

dynamics of private vehicles and taxis. In the lower layer, given the demand den-

sity over the current region, a coverage control scheme operates to distribute the

vehicles within the region to achieve a demand-aligned configuration, which pro-

vides each vehicle with relatively detailed (i.e., intersection/node-level) position

guidance. To bridge both layers, a middle layer mechanism is developed for con-

verting the upper layer decisions into dispatching commands for individual vehi-

cles by solving a Mixed-Integer-Linear-Problem, which minimizes the distance

required to achieve the optimal coverage and repositioning decisions.

Implementing a controller for a large-scale system, onemay face problems such as

highcomputational effortdue to complexmodels andhighdimensions required for

accurate networkmodeling, especially if themodel and controller are developed to

compute control actions for every individual vehicle over the whole network. One

way to solve this problem is to build a hierarchical control structure. Such struc-

tures decompose the control problem into a hierarchy of decision-making levels,

and operate via coordinating between the actions of an upper layer controller (op-

erating at the aggregated traffic level) and a lower layer controller (managing in-

dividual vehicles). The control structure is shown in Figure 5.

4.2.1 Main assumptions

Themain assumptions supporting this method are:

1. Thenetworkcanbeseparated into regionsofhomogeneouscongestion (MFD-

based model requires this to run predictions in the upper-layer);

2. Thenetwork controller canpredict regional demand (as aPoissonprocess) for

the near-future;

3. The local controller can use historical data to determine the intra-regional

demand distribution (as a probability function on the origins of new service

requests);

4. Vehicles are fully compliant to the provided repositioning and dispatch in-

structions;
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Figure 5: A hierarchical control framework for vehicle rebalancing.

4.2.2 Upper-layer controller

Theupper layer controller collects aggregated information, suchashowmanyempty

vehicles are ineach region, fromall urban regionsat a relatively largeupdateperiod

Tu. The control action generated from the upper layer determines howmany vehi-

cles should stay in current regions and howmany vehicles should relocate to other

regions, in order to improve availability and thus minimize the total waiting time

of passengers. Furthermore, the middle layer transfers the obtained upper layer

guidance to the lower layer and specifies which vehicle should stay or move, con-

sidering the travel costs caused by repositioning. It is operated within each region

and requires relatively more detailed information, such as the coordinates of each

vehicle andwhether it is occupied or not. Note that themiddle layer can only be ac-

tivated when the upper layer is active. The lower layer is operated in a distributed

manner so that each vehicle can obtain its own control action, which facilitates its

implementation at a fast update period Tl. The empty vehicles that are instructed

to stay in the current region (i.e., idle vehicles, see the left part of lower layer in

Figure 5) communicate and cooperatewith each other to achieve better vehicle po-

sition configuration, while the rest of the vehicles (i.e., repositioning vehicles, see

the right part of the lower layer in Figure 5) are guided to other desired regions as

per the relocation commands.

In the upper-layer, dynamic equations can be discretized in time with a sampling

time Tu (unit: h), for enabling formulation of an associated finite-dimensional

nonlinear optimization problem. Rewriting them in a compact form, we can for-

mulate the problem of finding the optimal relocation control input rod(k) values

thatminimize the total numberof canceled trip requests, as the followingdiscrete-
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time economic nonlinear MPC problem:

uκ

N∑
κ=1

∑
o∈R

∑
d∈R

λBod(k + κ) exp(γ0 (n
V
od,κ)

γ1(vo,κ)
γ2wγ3)Tu (11a)

x0 = x(k) (11b)

for κ = 0, . . . , N − 1 : (11c)

xκ+1 = F (xκ, q(k + κ), uκ) (11d)

0 ≤ Trod,κ ≤ nVod,κ for o, d ∈ R (11e)

where κ is the MPC time interval index (i.e., discrete-time clock internal to the

MPC), k is the current discrete time step, N is the prediction horizon, while xκ and

uκ are the state and control input vectors internal to the MPC (i.e., predicted states

and controls), respectively. To compute the loss probability, λBod(k) is an exogenous

demand input for busy ride-hailing vehicles; the remaining γi, i ∈ {0, 1, 2, 3} are pa-
rameters expressing the sensitivity of the matching algorithm to the number of

vacant vehicles (nVod,κ), traveling speeds (vo,κ) and passengerwaiting time tolerance

(w). A detailed estimation of parameters in Equation 11 will be provided in the full

paper.

4.2.3 Middle-layer controller

Once theupper layerprovides thenumberof vehicles transferringbetween regions,

the mid-layer selects which vehicles should move to other desired regions. Va-

cant vehicles staying in the current region are operated to maintain a good spatial

configuration to uphold service quality. Therefore, for each region R, the cover-

age control method is employed to compute the optimal configuration of intra-

regional positions of individual vehicles formaximizing theweighted covered area.

Then, given the computed intra-regional vehicle positions, the assignment of ve-

hicles can be determined by solving the optimization problem in Equation (12),

complying with the upper layer decision. Specifically, for objective DR, the first

term considers the reposition distance between regions, while the second term

takes the intra-regional traveling distance into account:
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ψir,ωil
DR =

∑
i∈I

∑
r∈R

ψird
out
ir +

∑
i∈I

uRR∑
l=1

ωild
in
il (12a)

∑
r∈R

ψir +

uRR∑
l=1

ωil = 1 ∀i ∈ I (12b)∑
i∈I

ψir = uRr ∀r ∈ R\{R} (12c)∑
i∈I

ωil = 1 ∀l ∈ {1, . . . , uRR} (12d)

∑
i∈I

uRR∑
l=1

ωil = uRR (12e)

ψir ∈ B ∀i ∈ I and ∀r ∈ R (12f)

ωil ∈ B ∀i ∈ I and ∀l ∈ {1, . . . , uRR} (12g)

where ψir and ωil are binary decision variables expressing whether a vehicle i is as-

signed to region r or toposition l, doutir and dinil are the travelingdistances for avehicle

i to reach region r or the position l in the current region, respectively, I is the set

of vacant vehicles, uRr is the control action obtained in the upper layer, indicating

howmany vehicles shouldmove from regionR to region r, while uRR is the number

of idle vehicles that should stay in the current region.

Note that the constraint in Equation (12b) limits a vehicle either to stay in the cur-

rent regionormove toanother region. Equations (12c) and (12e) ensure compliance

with the upper layer decision. This problem was inspired by classic assignment

problems, such as [48].

4.2.4 Lower-layer controller

In the lower layer, the coverage control algorithm is operated for the vehicles that

are instructed to stay in the current region (i.e, idle vehicles). The coverage con-

troller steers these vehicles towards an optimal spatial configuration (indirectly,

towards maximizing availability for service) by operating at a fast time scale and

with detailed position guidance [49]. Such coordination provides benefits to the

system by dynamically allocating the vehicles according to the different demand

densities of various city districts.

The city map can be presented as an undirected graph G = (Q,E), where Q is the

set of nodes representing the intersections and E is the set of road links. If origin-

destination pairs for trips are recorded in historical taxi data, we can compute the

probability that a request starts at a node as φ(q). With a slight abuse of notation, q

in this section denotes a node on the graph (with
∑

q∈Q φ(q) = 1).

The coverage objective function in Equation 13 is formulated using algorithms that
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group the nearest intersections to each vehicle. This information allows us to de-

fine the so-calledVoronoi tesselation. According to [50], theoptimal position con-

figuration of all vehicles is attained when each vehicle is at the centroid of its re-

spective Voronoi cell. The centroid of a graph Voronoi cell can be computed as an

integer optimization problem as Equation 14. As it only requires local information

for each vehicle to calculate the Voronoi tessellation, this control algorithm is able

to provide each vehicle with an intersection/node-level rebalancing command in

a distributed manner (i.e., without requiring a central planner to coordinate the

movements of all vehicles).

H(P, V ) =

nidle∑
i=1

∑
q∈Vi

d(pi, q)
2φ(q) (13)

C(Vi) =argmin
q

∑
q∈Vi

d(pi, q)
2φ(q) (14)

27 DIT4TraM_D3.3_final



4.3 Rebalancing with in-service vehicles through

incentives for ride-splitting (EPFL)

Given a ride-sourcing platform that dispatches a fleet of vehicles to serve single-

occupancy solo trips and double-occupancy pool trips, the third proposed rebal-

ancing strategy utilizes pool trips as a rebalancing tool. The operator can employ

this strategy by extracting information on demand density and demand loss dis-

tributed in different areas of the network, and recommend vehicles to serve a spe-

cific set of pool trips, so that these drivers can drop off their final passenger in a

high demand area, whereas without the rebalancing strategy vehicles are likely to

end up in low demand areas.

The benefit of rebalancing in-service vehicles is as follows: given some spatially

heterogeneous ride-sourcingdemandwhichcannotbeserved inasatisfactoryman-

ner without increasing the fleet size, for example, as illustrated in [51], one can

observe a shortage of vacant vehicles in high demand regions in the network. This

means that empty vehicles often immediately become assigned to pick up some

new passengers in their vicinity, and may not remain empty for a long time for

relevant rebalancing strategies to be applied. Therefore, idle vehicle relocation

strategies such as [1] alone may no longer be sufficient in improving the service

level. Additionally, we expect rebalancing of in-service vehicles to reduce the total

distance that vehicles must travel for the case of empty vehicle rebalancing.

As an initial step, all passengers are assumed to have the same preferences and

willingness to pool in response to some trip attributes, which will be elaborated

below in Equation (15). Generally speaking, longer trip duration, higher trip cost,

and the presence of another rider, will be considered as undesirable when multi-

ple options are available. Therefore, when the ride-sourcing platform proposes a

pool trip as a means of rebalancing and passengers have the choice to accept or

reject the pool trip, an appropriate monetary incentive can be offered in order to

increase the attractiveness of the pool option, so that the operator can better meet

its rebalancing objective. The assumption on passengers’ choice preference being

homogeneous can be relaxed at a later stage.

A user-based incentive naturally increases the attractiveness of a travel option for

the passenger, when other trip attributes remain unaltered; however, without any

policy for subsidies from the platform, the pricing incentive is directly related to

a revenue reduction for the ride-sourcing platform. The methodology developed

later in this chapterwill consider a baseline pricing strategy as established byUber,

which is regarded as a cost-neutral policy. The secondproposed rebalancing strat-

egywithout pricing incentive is also considered to be cost-neutral for the operator,

since no additional discounts are provided for the rebalancing trips. The third pro-

posed rebalancing strategy offers an additional $1-off to pool trips that can serve

as rebalancing trips. If thenumber of rebalancing trips increases, this strategymay

eventually lead to a platform revenue reduction; therefore, a next research direc-

tion should be to consider any trade-off between matching performance and the
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Figure 6: Simulation framework for in-vehicle rebalancing with pool incentives

costs of incentives.

The rebalancing framework is implemented in a discrete event simulator illus-

trated in Figure 6, which describes the workflow every time a new request from

rider j enters the platform. First, a maximum of two matching vehicles are pro-

posed, with one being a solo option and second a pool option with rider i. For the

pool option, only the vehicle as the best pool candidate is selected. This refers to

the vehicle that, when a pool trip is served, would lead to the lowest ratio between

the total distance of the pool alternative and the total solo distances if served solo.

Then, for the origins and destinations of riders i and j, the platform evaluates the

current vehicle demand in each region and classifies the regions as high or low de-

mandareas. Next, by comparing thedemandcharacteristics at theorigins anddes-

tinations of riders i and j, we determine whether the pool option can serve as a re-

balancing trip, and whether solo option will impede rebalancing actions. Finally,

the rider(s) choices between solo and pool options are characterized by a random

draw from a probability distribution. The remainder of this section will provide

details on the above four components.

4.3.1 Main assumptions

This methodology relies on the following main assumptions, with most similar to

those stated for Method 2 presented in Section 4.2.1:

1. One singleMFDcan capture the congestiondynamics of thenetwork for travel

time estimation.

2. Private vehicles circulate in the network to travel from their origin to destina-
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tions; they are assumed to be parked before and after completing their trips,

and therefore do not contribute to congestion.

3. Passengers have identical choice preferences given the attributes of several

travel options.

4. Vehicles are compliant when given pick up and drop off instructions. In par-

ticular, they are indifferent to any revenue estimation.

4.3.2 Matching description for pool trips

When a new rider, referred to rider j, places a request, a solo trip is proposed to

match the riderwith thenearest emptyvehicle, provided thatmatching constraints

are satisfied. Additionally, a pooled trip is proposed. As summarized in Table 1,

parameter Ψ is set such that the total distance of the pool trip must not exceed the

sum of the lengths of two respective solo trips. The platform computes the ratio

between the first and second quantity. In the base pooling scenario, the pooling

option with the lowest ratio is proposed.

In the rebalancing scenario, given the respective origins and destinations of po-

tential pooling, the platform identifies the respective zones as exhibiting high or

low demand to assess the necessity of rebalancing actions. A rebalancing pool trip

is loosely defined as one where the vehicle has its final destination in a zone with

high demand loss, whereas if two separate solo trips were to be served, one vehi-

cle would drop off its passenger in a low demand zone, hence contributing to the

accumulation of empty vehicles in the area, unable to fulfil requests in high de-

mand areas that are far away. For this purpose, the proposed method works with

a network where nodes are partitioned with a k-means clustering algorithm into a

predefined number of regions that each contains demand aggregated at the region

centroid, as described earlier in Section 5.1.5. This level of aggregation can help

observe spatial and temporal demand patterns.

4.3.3 Pricing and passenger choice attributes

The next step consists of setting the respective prices for the solo and pool trip.

First, a baseline price for each service is proposed, which is composed of a base

price plus a per-kilometer price, as presented in Table 1. Then, when a pool trip

is considered to be desirable as a rebalancing trip, the platform suggests this trip

to the rider. Two sets of experiments are run: one where the platform provides

no pricing incentive, and another where a flat-rate discount of $1.00 is proposed

to each rider in a pool trip. As discussed in the literature review in Section 2, in

user-based relocation strategies, the platform can increase the attractiveness of

this option for the passengers, as a way to encourage them to choose one option

over another, and help achieve the platform’s rebalancing objectives.

When traveller i is presented with one solo and one pool trip option, their choice
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probability is related to their perceived costs associatedwith each option. The pro-

posed model draws a random number xih with uniform probability between 0 and

1, and compare this value with the perceived attractiveness of the pooling option

hi, which represents the pooling attractiveness hi normalized with an estimated

lower and upper bound on its parameters. Define the attractiveness of pooling hi

for a rider i as

hi = α · νi · (ti, solotravel + ti, solowait − t
i, pool
travel + ti, poolwait ) + cpool + (pi, solo − pi, pool) (15)

where, from left to right of Equation (15), α is a parameter tuned based on the lower

and upper bounds of hi, νi is the passenger’s value of time in $/hour; the next four

terms are the travel and waiting times of the solo and pool options, respectively;

cpool is another tunedparameter that reflects the relative comfortof apool trip com-

pared to a solo one, and is identical across the population; finally, the final two

terms together represent the price difference between the solo and pool option. As

for the normalization of hi for obtaining hi, this is performed by considering the

lower and upper bounds for travel time, waiting time, and price, i.e. information

related to the minimum/maximum trip lengths, waiting times, and prices. This

ensures that the normalized values are mainly between 0 and 1. If xih ≤ hi holds,

the rider chooses pool, and otherwise solo; in other words, a higher hi is related to

a higher probability of acceptance for pooling. Both riders must accept pooling for

a match to be successful, i.e. mutually accepted.
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Figure 7: OSM map of Lyon

5 Methods comparison

5.1 Case study description

5.1.1 Introduction

Wechoose the city of Lyon, France as a case study. Lyon is the thirdmost populated

city in France and the center of the secondmost populated urban area in France.

The network we model covers 121km2 and includes both the city of Lyon and the

city of Villeurbanne, both located within a circular ring road. The city is organized

at the confluence of two rivers, the Rhône and the Saône Rivers. The city land be-

tween the two rivers, hosts the commercial city center. Thewestern part of the city

includes the historic district, while the eastern half of the city hosts the universi-

ties, business areas and major transportation hubs such as Lyon Part-Dieu train

station and Saint-Exupery Airport. Figure 7 presents a map of the city together

with its main transportation infrastructures.

The supply calibration and the demand scenarios used in here have been calculated

within the ERCMagnum Project [52].
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Figure 8: Travelers inflow and outflow during the morning peak

5.1.2 Demand balance

In Figure 8, we present the outgoing demand deficit over the study area during the

morningpeak (6amto 10am). This representationallows to identify thegeographic

patterns of the demand during that period, and anticipate the needs for fleet rebal-

ancing. We observe that some specific areas are characterized by large imbalances

of incoming and outgoing flows, with high inflows and low outflows. It is espe-

cially the case for university areas: La Doua campus in the north of the city and

Université Lyon 3 campus along the Rhône river. The area of the train station Lyon

Part-Dieu, in the city center, and the Vinatier hospital area, in the eastern part of

Lyon also seem equally attractive. Although these spatial demand patterns are not

mode specific, they illustrate how ride-sourcing vehicles operating that demand

are likely to get accumulated within those area if no rebalancing strategy is im-

plemented. Other regions of Lyon, such as the southern industrial neighborhoods

may also suffer from a lack of outgoing demand to compensate the ingoing flows.

Note that these incoming flows are fed by flows from the periphery of the area

through network entry points not shown on this map.

5.1.3 Network specification

The Lyon area overall network is quite large. In order to conduct rapid simulations,

wemodel the trafficona simplifiednetworkof the city. The tertiary roads are elim-

inated from the network to keep only the primary and secondary urban roads and

highways, as illustrated by Figure 9. This simplified network corresponds to a net-

work composed of 5586 links and 3605 nodes, for a total link length of 542 km.
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Figure 9: Study network. Red links correspond to highways, yellow to primary road
section and green to secondary road sections.

5.1.4 Request generation

We simulate 4 hours of road traffic, representing the 4 morning peak hours of a

typical day, between 6am and 10am. This demand is constructed from a dynamic

origin-destinationmatrix covering the city of Lyon and its urban area for a typical

day. The demand is characterized hour by hour, with a spatial granularity defined

at the scale of an IRIS zone, the reference spatial division of the French statistical

institute. To obtain the flows at the restricted scale of the city, the flows coming

from or going to the Lyon periphery are reassigned to entry and exit nodes at the

periphery of the network. The application of a Poisson process allows the assign-

ment of departure times to travelers at microsecond resolution, while a uniform

drawing of origins and destinations among the nodes of the corresponding IRIS

area allows for a finer spatial distribution of the demand.

At this stage, we do not have data on mobility on demand services in the city of

Lyon. To simulate the operations of this type of service, we assign a share of the

personal vehicle demand to a singlemobility on demand service. In this study, this

share of demand is arbitrarily set at 15% of internal flows (11% of overall demand).

At this stage, ride-sourcing is not considered accessible to flows coming from or

going to the outskirts of the city in order to avoid entry and exit of MoD vehicles

from the simulated perimeter and to work with a constant fleet.
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Figure 10: Partitioning of Lyon into 50 demand zones

5.1.5 Network partitioning

The methods we implement require the definition of service areas or local control

perimeters. These service areas are defined from the clustering of IRIS zone cen-

troids, using theK-meansmethod. We select a partitioning in 50 zones, associated

on average to 72 nodes of the network. This partitioning is illustrated in Figure 10.

5.1.6 Simulation settings

The numerical experiments presented in this deliverable have been conducted on

the simulators developed by EPFL and Univ. Gustave Eiffel. These simulators rely

on the samemodeling framework, relying on macroscopic trafficmodel, the trip-

basedMacroscopicFundamentalDiagram(MFD). Fordetails about this framework,

we refer the reader to D6.3, inwhichwe extensively described the overallmodeling

chain and how it is applied to fleet management.

As the used traffic flowmodel directly relates the average traffic speed in one area

with the number of vehicles accumulated there, ensuring the comparability of the

results only takes:

• uniformly designing the individual vehicles and the mobility service strate-

gies (routing, matching);

• defining a common set of parameters;

• setting a unique demand scenario.

Both simulators were set up according to this objective and we checked on a test

case without mobility services (individual mobility only) that the traffic dynamics

were the same.
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In the case of ourmobility service implementation, the comparative analysis of re-

sults presented below allowed us to identify a technical difference in the design of

the matching algorithm, which has an impact on some of the performance of the

service. It does not prevent a comprehensive comparison of the proposed algo-

rithms, but will be corrected shortly as part of a continuous improvement of our

results.

Table 1 below summarizes the selected simulation parameters.

Table 1: Selected parameters

Parameter Unit Values

Simulation length hr 4

Simulation warm-up time1 hr 0.5

Ride-sourcing fleet size M vehicles 4000

Max. matching time2 Φ minutes 1

Rebalancing frequency ∆rebalancing minutes 10

Max. waiting time for solo trip ∆solo minutes 10

Max. waiting time for pool trip ∆pool minutes 20

Max. trip detour ratio3 Ω - 0.2

Max. pool total detour ratio4 Ψ - 1

Value of time: constant for all ride-sourcing passengers ν $/hr 25

Solo trip base fare fs,base $ 2.20

Solo trip per-km fare fs,v $/km 1.00

Pool trip base fare fp,base $ 2.00

Pool trip per-km fare fp,v $/km 0.80

In this deliverable, a single fleet size setting was explored, set to 4000 vehicles,

yet the impact of fleet size impacts has been studied in previous works [53], [47].

It corresponds to a large fleet size scenario which ensures that some vehicles are

available for rebalancing and pickup.

1Simulation time after which KPIs will be collected
2Time allowed for the ride-sourcing platform to find matching vehicles for a new request, after

which the passenger will exit the platform and travel by private vehicle
3Ratio between distances of pool and solo trip for one passenger
4Ratio between the total distance of a pool trip and the total lengths of respective individual solo

trips
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5.2 Comparative results

5.2.1 Selected KPIs

Wecompare the three strategies proposed through a set of 13 KPIs split into 4 focus

categories:

• The Service category looks at the results with amacroscopic scope. The num-

ber of passengers served is a key evaluation criteria. We additionally look

at the amount of pool rides for scenarios involving ride-splitting. Finally,

the dynamic evolution of vehicles states provides indicators regarding vehicle

utilization, i.e., whether the fleet is used to its full capacity or not.

• The Users category evaluate the service from the user perspective. We look

into waiting and service time dynamics throughout the simulation, as well as

overall travel time.

• The Vehicles category evaluate the service from the drivers perspective. We

assess the traveled distances spitted into empty and busy distances.

• The final indicator category related to Traffic variable. In each scenario, we

evaluate the vehicle accumulation dynamics, and measure the total traveled

distances.

These KPIs are summarized in Table 2 below. In the following result section, they

are evaluated after a warm-up period of half an hour of simulation. This period is

considered sufficient given the short average travel times (between 5 and 10 min-

utes) observed between 6am and 7am, and the selected rebalancing frequency of

10 minutes.

Given that themethodsstudied involve littlemacroscopic stochasticity (passenger-

vehiclematching and vehicle routing decisions are deterministic), the results pre-

sented in here were obtained on a single simulation? At a microscopic scale, ran-

domness may affect the precise time of occurrence of the request and the mode

choices. But considering the spatial and temporal scales that govern our fleet re-

balancing strategies, we can expect it has a marginal impact on the results. The

robustness of the results will be assessed in continuation of this work.
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Unit Dyn. vs. Global

Service quality

Total served passengers # passengers global

Pooled rides users or % global

No. of vehicles in each state5 # vehs dynamic

Travelers

Waiting time s dynamic

In-vehicle time s dynamic

Total travel time s dynamic

Vehicles

Traveled distance km global

Service distance6 km or% global

Empty distance km or% global

Traffic

Vehicle accumulation # vehs dynamic

Total traveled distances km global

Table 2: Selected KPIs

5.2.2 Algorithms comparison

In the following section, we refer to the methods discussed above as:

• 1 - RH: Auctioning-based approach for ride-hailing fleet management

• 2 - RH: Hierarchical rebalancing for ride-hailing fleet management

• 2 - RS: Hierarchical rebalancing for ride-splitting fleet management

• 3 - RS: Incentives rebalancing strategy for ride-splitting fleet management

Additionally, the methods 2 and 3 are explored according to different control set-

tings. Regarding method 2, we explore the impact of the non-distributed local

repositioning only (2.1), versus the full hierarchical rebalancing process (2.2). For

method3, theperformanceof theproposed rebalancingcriteria is consideredwith-

out (3.1) and with a pricing strategy (3.2).

5.2.2.1 Service

Table 3 reports the performance of each strategy regarding the number of passen-

gers served. Because the implementation of base cases slightly differ from one

platform to the other, each strategy is compared against its corresponding base

scenario.
5Serving, relocating or idle
6including pick-up distance
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Passengers served %

1 - RH Base 17371.0
Rebalancing 17653.0 1.62

2 - RH Base 19478.0
Local repos. 20186.0 3.63
Full rebalancing 20349.0 4.47

2 - RS Base 19524.0
Local repos. 20208.0 3.50
Full rebalancing 20911.0 7.10

3 - RS Base 19990.0
Rebalancing 19773.0 -1.09
Rebalancing and pricing 19985.0 -0.03

Table 3: Service performances in number of passenger served

Weobservedasometimes significantdifferencebetween theperformanceof a sim-

ple service (base case, ride-hailing, no rebalancing) from one simulation platform

to another. In particular, we observed that the matching method implemented in

theMnMS platform (formethod 1 - RH) provided lower service performances than

the one implemented in the method 2 - RH study. These undesirable effect are

induced by technical choices of development on which we will come back to later.

The identificationof this problemwill allowus to correct itwithin theproject time-

frame, for an improvement and a subsequent valorization of these results.

The overall performance comparison also shows uneven results at this stage be-

tween the different rebalancing methods, with a gain in passengers served rang-

ing fromapproximately -1 to +7%. In a ride-hailing setting, the rebalancing strat-

egy based on auctioning is shown tomarginally increase the number of passengers

served (+282 travelers) compared to the base scenario.

In contrast, the hierarchical rebalancing strategy is shown to increase the number

of servedusers by871passengers (+4.47%). In that operational setting, our results

illustrate that the local repositioning strategy alone is already able to improve the

service performances by 3.63 %. This result is confirmed in a ride-splitting op-

erational framework (2 - RS). The local repositioning allows a 3.5 % increase of

the number of passengers served, while the complete hierarchical strategy allows

to reach an increase of 7.10 % users served (+1387 users). The benefits of ride-

splitting on the service performances compared to ride-hailing is also shown to

be larger when applying the hierarchical rebalancing strategy thanwhen no rebal-

ancing policy is implemented.

The last strategy implemented (M3) in a ride-splitting framework shows limited

results at this stage. The effects of simple rebalancing are presently counterpro-

ductive, with a reduction in the number of passengers served of 1%. This result is

discussed in Section 5.2.3.3. However, the pricing strategy is shown to positively

compensate for this undesirable effect, and further work on adapting the method

to this case study should make it possible to take advantage of the benefits of the
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Figure 11: volution of the number of vehicle in each state (serving, idle or rebal-
ancing) in base and rebalancing scenarios.

method already demonstrated for car-sharing systems [19].

Figure 11 illustrates the evolution of the vehicles states (serving, rebalancing or

idle) throughout the four hours of simulation for each rebalancing strategy. For

the sake of readability, only the results of the full control strategies are displayed,

together with the number of serving vehicles in the base scenario (dashed line).

RegardingMethodM1, the limited number of serving vehicles in the base scenario

confirms the impact of the matching method discussed above. The study of the

rebalancing fleet (green area) also shows that although a large number of vehicles

aremobilized by the rebalancing every 10minutes, it does not increase the number

of passengers served in the same proportion. Again, the matching algorithmmay

be limiting, although there may be other reasons for this result. We discuss this in

the discussion section.

Regarding Method M2, the lower number of repositioning vehicles highlights the

distributed control strategy. It allows giving instructions to multiple vehicles at

a time, which each one will have very small distances to travel in order to fulfil

the orders. Therefore, the majority of the vehicles in repositioning activities come

from the upper layers, which are responsible for longer distances dispatches. In

conclusion, although most vehicles perform quick small rebalancing movements,

as ordered in the distributed control, a few vehicles have longer distances to travel

in order to comply with near-future demand requests.

Still regardingMethodM2, butobserving thedifferencesbetweenride-hailingonly

and ride-splitting, it shows that fewer vehicles were used to serve requests. This

becomes clearer in thepeak-hour,wherenearly 500more vehicleswere idle. How-

ever, it served fewer requests too. With the increased number of rebalancing vehi-

cles, it shows that the rebalancing strategy was trying to compensate the smaller

number of vehicles moving (with passengers) to areas where the predictions say

they will be needed.
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Regarding Method 3, we observe that the rebalancing strategy slightly decreases

the number of in-service vehicles, and increases slightly the number of idle ve-

hicles. However, the number of rebalancing vehicles remains low, which is likely

due to the formulation and definition of the rebalancing trip destination or origins,

resulting in very few vehicles meeting these criteria.

5.2.2.2 Users

In Figure 12 are illustrated the average riding and total travel time for the users

of the mobility service during the simulation. Table 4 details the average service,

waiting and overall travel time for each strategy. The order of magnitude of these

variables are globally similar between test cases,with service timevaryingbetween

11.26 (M1 - base) and 12.71 minutes (M2 - RH, base), and waiting time varying be-

tween 2.24 (M2 - RS, full rebalancing) and 3.70 (M2 - RH, base).

Taking rebalancing strategies individually, Method 1 is shown to increase both the

service time (+1.71%) and the waiting time (+48.55%) of passengers. Overall, the

average travel time of passenger increases by +9.75%. This significant increase

in travel time is a priori a weakness of the method. However, considering the in-

creased of passenger served, these results suggest a more equitable service of the

different service areas, with some users having to wait for pick-up longer so that

more users can be served.

In both ride-hailing and ride-splitting settings, Method 2 is shown to reduce the

serviceandwaiting timeofpassengers. The full rebalancingstrategyhas thestrongest

impacton the results compared to thecorrespondingbasecase scenario.In the ride-

splitting operation mode, it allows to reduce the average waiting time by up to

8.93% Interestingly, in a ride-hailing setting, the local-repositioning-only strat-

egyprovidesbetterwaiting timereduction than the full rebalancingstrategy. How-

ever, it shouldbeseenasaconsequenceof theobjectives ineach layerof themethod.

In the one hand, the upper-layers try tominimize the number of lost requests (and

minimize the time to fulfil this objective). In the other hand, the lower-layer tries

todistribute thevehicles, such that theexpectedwaiting time isminimized. There-

fore, the full strategy lowers losses and keep goodwaiting times, whereas the local

strategy only minimizes the waiting times (indirectly serving more requests too).

Overall, M2 reduces the average travel time of served users by 1.46% for the ride-

hailing service, and by 2.32% for the ride-splitting service.

RegardingMethod3, results inTable4 showthat the rebalancingstrategies slightly

increase the travel times (0.48% for rebalancing, and 0.80% for rebalancing and

pricing), but the waiting times are slightly reduced. This finding can be explained

by the difference in the selection of the pooling option. More specifically, the base

scenario selects the pooling option with the lowest ratio between total distances

of pooled and solo trips, whereas the rebalancing scenarios examine five options

with the lowest ratio, and checks in ascending order whether the trip can serve as

rebalancing trip. As a result, the suggested options in the base case have lower
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Figure 12: Evolution of average in-vehicle and total travel time in base and rebal-
ancing scenarios.

Travel time % Waiting time % Total %

1 - RH Base 11.26 2.33 13.59
Rebalancing 11.45 1.71 3.46 48.55 14.92 9.75

2 - RH Base 12.00 3.70 15.70
Local repos. 11.99 -0.16 3.36 -8.94 15.35 -2.23
Full rebalancing 11.97 -0.25 3.50 -5.37 15.47 -1.46

2 - RS Base 12.71 2.46 15.17
Local repos. 12.66 -0.42 2.26 -8.16 14.91 -1.67
Full rebalancing 12.58 -1.05 2.24 -8.93 14.82 -2.32

3 - RS Base 12.46 3.66 16.12
Rebalancing 12.52 0.48 3.63 -0.87 16.15 0.17
Rebalancing and pricing 12.56 0.80 3.65 -0.27 16.21 0.56

Table 4: Evolution of average service, waiting and overall travel time for the ser-
vice users

travel times compared to the rebalancing options. On the other hand, the wait-

ing time reduction in the rebalancing scenarios, although not a direct outcome of

thematching algorithm, can be explained by the decrease in vehicle accumulation,

which allows vehicles to reach passengers faster than in the base scenario.

5.2.2.3 Vehicles

In Table 4 are reported the average distances traveled by vehicles when in service

or idle for each of our rebalancing scenarios. The evaluation of these distances is

also a good indicator of the performances of the service as they can be used as a

proxy for income estimation and service externalities.

Due thematching algorithm designed for studyingM1, the limited number of pas-

sengers served explainswhy thebase scenariodisplays shorter average service dis-

tance than for the other scenarios. This rebalancing strategy implies an increase
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Avg. distance serving Avg. distance empty Avg. total dist.
(km) (%) (km) (%) (km) (%)

1 - RH Base 19.84 0 19.84
Rebalancing 20.49 3.25 13.60 + inf 34.08 71.77

2 - RH Base 26.86 64.65 91.51
Local repos. 27.12 0.98 64.67 0.04 91.80 0.32
Full rebalancing 27.62 2.84 64.23 -0.65 91.85 0.38

2 - RS Base 20.90 70.61 91.51
Local repos. 21.54 3.07 70.28 -0.48 91.82 0.33
Full rebalancing 22.46 7.47 69.69 -1.30 92.15 0.70

3 - RS Base 25.05 49.18 74.23
Rebalancing 24.83 -0.89 49.30 0.24 74.13 -0.14
Rebalancing and pricing 25.03 -0.09 49.22 0.07 74.24 0.01

Table 5: Comparison of vehicles average traveled distances

of 3.25% of the service distance. Regarding the empty travel distance computation

when applying this rebalancing strategy, the comparison with the others scenar-

ios is also limited by the fact that in scenario 1 idle vehicles are considered stopped

while the implementationofother scenarios consider cruising idlevehicles. There-

fore, when no rebalancing is applied, idle vehicles wait for the next matching at a

fixed location and the empty distances are null.

Method 2 allows increase the average in-service distance of vehicles by 2.84% for a

ride-hailing service and 7.47% for the ride-splitting service. Simultaneously, the

average idle distance reduces sligtly for ride-hailing and ride-splitting services.

The overall average travel distance rise is limited compared to the improvement of

passengers served (7.1%). That is reached bymaking vehicles closer to passengers,

while trying to travel the least without passengers. In one hand, the local strategy

only gives short distances for empty vehicles. In the other hand, when vehicles

must travel empty for longer distances, the Middle-Layer chooses these vehicles

such that the total distance need is shortened (locally and inter-regionally).

We observe thatmethod 3 performs less well. While the distances traveled are rel-

atively unaffected, the method tends to contribute to a slight decrease in the ser-

vice distance, and a slight increase in the idle distance. The rebalancing strategy

alone seems responsible for this effect, while the addition of the pricing strategy

balances out the effects of rebalancing and pulls the results in the right direction.

These results are discussed further below.
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Max. acc. (# vehs) % Total distance (km) %

1 - RH Base 34239.0 1060060.87
Rebalancing 34238.0 -0.00 1118060.68 5.47

2 - RH Base 36010.0 1351851.52
Local repos. 35674.0 -0.93 1350374.26 -0.11
Full rebalancing 35713.0 -0.82 1349879.32 -0.15

2 - RS Base 35956.0 1351885.19
Local repos. 35634.0 -0.90 1350417.46 -0.11
Full rebalancing 35095.0 -2.39 1348834.63 -0.23

3 - RS Base 37883.0 1244017.88
Rebalancing 37840.0 -0.11 1244468.30 0.04
Rebalancing and pricing 37840.0 -0.11 1243990.45 -0.00

Table 6: Traffic variables evolution

5.2.2.4 Traffic

Finally, we study if the strategies implemented have an impact on the overall road

traffic. Table6displays themaximalvehicle accumulationand total distances trav-

eled in each scenario. The results account for both the personal vehicles and the

ride-sourcing fleet. At this stage, the impact on the traffic variables is shown to be

very limited. This is can be explained by the high share (89%) of demand for indi-

vidualmobility (versus 11% ride-sourcing requests) in the demand scenarios stud-

ied here, that contributes to an unavoidable traffic. By studying different demand

scenarios, our future work will further evaluate the potential of these services to

reduce road traffic and its externalities.
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Figure 13: Analysis of abandoned trips between 7:30 and 7:40am

5.2.3 Discussion

5.2.3.1 Method 1

Several of the results of theM1method presented can be considered as unsatisfac-

tory.

First, the number of passengers served in the case of a baseline scenario (without

rebalancing) is very limited, and lower than the results achieved by the baseline

scenarios of methods 2 and 3. This difference allowed us to identify a limitation

of thematching algorithm implemented in theMnMS platform. This is a technical

design choice whereby the strategy ofmatching passengers with the nearest vehi-

cle is based on the Euclidean distance calculation rather than a network distance

calculation. While this approach allows fast computations and satisfactory results

on densely connected networks, it was found to be deficient here. We identified

that the nearest vehicle based on the Euclidean distance sometimes had to travel

long distances to reach the passenger (ring road, bridge crossing, ...). This implied

longwaiting times for passengerswhofinally decided to abandon the ride and take

their personal vehicle. Our current explorations show that this feature that affects

the baseline scenario also impacts the rebalancing scenario. Thus, the relocated

vehicles are not necessarily assigned to the new requests, limiting the gain in pas-

sengers served.

Another issue is the large number of vehicles relocating, and the impact of this

on empty distances traveled. It seems that depending on the prediction horizon

chosen, the utility function used in these simulationsmay favor the rebalancing of

distant vehicles, contributing to a large number of empty vehicles. This will be the

subject of further study, in which a priorisation of short rebalancing distances by

local controllers may compensate this problem.
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5.2.3.2 Method 2

Although highly optimized, the proposed multi-layer control framework still re-

sulted in a number of unserved requests, while there were drivers idling. Figure

14 highlights the visualization of ride-sourcing requests and focus on the differ-

ence between the served and unserved requests. One can note that, at one point,

the central area of Lyon is well-served and faced no losses. On the other hand, re-

quests coming fromoutside the city center, especially from thewestern and south-

ern parts of Lyon, could not be served.

Figure 14: Geographical summary of ride-sourcing requests service quality using
the Multi-Layer Control.

To understand what caused this problem, Figure 15 details the unserved requests

to thewesternmostmacroscopic region used for the proposedMulti-Layer Control

approach. Firstly, it highlights the imbalance between the demand and the supply

of drivers in that area. While the lost requests are concentratedon thewesternmost

part ofRegion 1, idle driverswere concentratedon the easternmost part ofRegion 1.

The design of the regions used a weighted-network k-means algorithmwith three

random initial centroids. We have to highlight a few points about this result:

• The outcome of this regional designmade the westernmost region accessible

only by a small set of edges (reaching 23 intersections, out of the more than

700 in that area).

• Most of the demanddestinations (areawhere drivers tend to becomeavailable

for new requests) concentrate in the central area, especially close to 5 of the

23 intersections connecting to Regions 2 and 3.

Recall that the Upper- and Middle-Layers of the approach dispatch the selected

vehicles to the border of the destination area, before the Lower-Layer acts with its

distributed coverage control. Therefore,manyvehicles accumulatenear theborder

because of the few entrances and proximity to high demand area. However, cov-

erage control cannot differentiate vehicles at the same location, since every inter-

section is equally distant to overlapping centroids. To work around this issue, we
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Figure 15: (Left) Macroscopic regional setting used in the Multi-Layer Control ap-
proach. (Center) Concentration of lost requests in Region 1 (R1). (Right) Average
concentration of idle ride-sourcing vehicles in Region 1 (R1).

adapted the coverage control to ignore overlappingpositions and consider only one

of them in the process. Therefore, a single vehicle is gets instructions at a time out

of the overlapping ones. However, the dispatch of a single driverwas not enough to

serve the demand in time, resulting in drivers beingmatched long before reaching

the repositioning destination. In themeantime, the other drivers wait for the next

control step to get new instructions, and new drivers enter the area, increasing the

waiting line of idle vehicles evenmore.

There are possible alternatives to overcome this limitation with the coverage con-

trol. A indirect solution is to rethink the regional design. One alternative is the

development of methods that account for the accessibility of regions (providing

enough connecting edges to neighbouring areas). Previous works in MFD cluster-

ing could be utilized in this direction [54], [55]. Another alternative is to rethink

the coverage control layer to dispatch multiple overlapping vehicles at once, in-

stead of the current one at a time policy. Such alternative requires attention not

to transfer the entire supply of drivers at once, and transferring the imbalance to

another area.
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Figure 16: Demand and loss aggregated at the centroids of 50 zones from pool
scenario of Method 3

5.2.3.3 Method 3

The proposed rule-based rebalancing strategy shows limited improvement at this

stage. Figure 16 illustrates the demand distribution aggregated over the 50 re-

gion centroids, where the marker size corresponds to the demand intensity. It

can be observed that while the peripheral regions are characterized by higher de-

mand outflow indicated by the radius of blue circles, the central region experiences

higher vehicle inflow illustrated by the sizes of the yellow circles. In the same fig-

ure, the size of blue crosses indicates the aggregated number of abandoned re-

quests from the base case scenario for pooling after the four-hour simulation run.

In fact, the rebalancing scenario, although targets areas of high trip abandonment,

still showed higher demand losses in peripheral areas, as in Figure 16.

The proposed ride-splitting rebalancing strategies described in Section 4.3 cur-

rently shows limited improvement, as compared earlier in Table 3. Additionally,

Figure 11 indicates that the number of rebalancing vehicles at any time is very low

(there are 25 rebalancing vehicles at the maximum).

One immediate consideration for service improvement is to implement an addi-

tional rebalancing objective at trip origins in low demand areas. So far, the rebal-

ancing strategy only targets trip destinations, aiming to extend the final destina-

tion of solo trips towards high demand areas. For the next step, we intend to in-

corporate a decision rule to discourage pooling if two trips originate in lowdemand

areas and have destinations in high demand areas. The hypothesis here is that by

aiming to dispatch as many empty vehicles from low demand regions to high de-

mand region through serving solo trips whenever possible, such vehicles can be

employed in a similar manner compared to the empty vehicle relocation strategy

in Method 2, but with a reduction in distances travelled while empty; in turn, we
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can investigate whether this can increase the vehicle supply at higher demand re-

gions in peripheral areas in the network.
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6 Conclusion

The asymmetric commuting mobility patterns observed at the urban scale affect

thefleets of on-demandmobility services. During themorning peak, certain zones

attractmassivelypassengerflows: university,multimodalhubs, industrial andem-

ployment areas (see Section 5.1.2). Without applying fleet reorganization strate-

gies, on-demand service vehicles, subject to these demand patterns, may see their

fleet accumulate in theseareasandexperienceashortageofvehicles inhigh-demand

regions instead.

Anticipating these patterns and proactively reorganizing fleets is a guarantee for

minimizing passenger waiting times, satisfying a broader demand, and improving

service efficiency. In this deliverable, we first discuss the issue of demand pre-

diction for these mobility services and present a work conducted as part of the

DIT4TraMproject. This researchsupports themethodological developmentofproac-

tive rebalancing strategies.

We then propose three algorithms for rebalancing a fleet of on-demand mobility

services:

• A first algorithm (M1) is based on a game theoretical approach via a bidding

andmatchingprocess. It is studiedat this stage in the context of ride-hailing-

only operations.

• A second algorithm (M2) relies on a hierarchical rebalancing approach based

on an upper-level model predictive control framework and a local fleet repo-

sitioning. This algorithm, adapted to ride-hailing and ride-splitting opera-

tions, is studied in both contexts.

• A thirdalgorithm(M3) leverages ride splitting to limit vehicle accumulation in

low-demandareasand foster vehicle in-service repositioning inhigh-demand

areas. This algorithm, based in essence on ride-splitting, is only studied in

this context.

All three rebalancingalgorithmspresented in thisdeliverableweredevelopedwithin

the DIT4TraM project. For the first time, these methods are tested at a large scale

and compared in a common case study. The city of Lyon, France, is picked as a

study area and used to simulate 4 hours of the morning peak traffic.

The comparative analysis we conduct focuses on criteria of overall service perfor-

mance, passenger travel times, vehicle distances traveled, and conventional traf-

fic variables. They allow us to underline gains in terms of number of passengers

served and reduction of waiting times or empty kilometers traveled. Yet, the re-

sults obtained on other case studies suggest that these first results obtained on the

city of Lyon do not allow us to illustrate the full potential of the performances of

the developed methods [56], [53], [47], [57]. The previous part of this document

proposed explanatory elements for the limitations encountered at this stage. They

can be summarized as follows:
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1. The algorithmic design of some platformmodules;

2. Methodological choices specific to each method (utility functions, coverage

control, pricing strategies);

3. Thenetwork topologyand thedemandpatterns characterizedbyahigh inflow

from the outskirt of the network;

4. Some calibration elements, such as zonal partitioning.

Continuing the efforts of calibration themethods to the case study presented here,

conducting extended sensitivity analyses, and exploring the proposed research di-

rections should allowan improvementof these results. Both teams (EPFLandUniv.

Gustave Eiffel) will continue towork together within the project to improve the al-

gorithms and look for cross-fertilization. In particular, the joint use of these dif-

ferent methods will be explored, for instance to more systematically use micro-

scopic fleet repositioning or pricing strategies.
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