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Executive Summary

This report represents Deliverable 3.1 of the DIT4TraM Project, comprised of re-

search anddevelopmentwork carried out inTask 3.1: Passenger-oriented distributed

control strategy for large-scale urban systems, as part ofWork Package 3: Cooperative

multi-class distributed traffic management during the period M1–M18.

Task3.1 focusesondevelopingdistributed trafficcontrol algorithms togovern trans-

portation networks, that are geographically distributed and with multiple entities

and operators.

At the intersection level, the IntegratedSignal andBusLaneControl (ISBLC) frame-

work is developed, aiming to maximize passenger throughput and improve the

level of service for public transport passengers. It adjusts traffic signals and as-

signs dedicated bus lanes based on traffic conditions and bus occupancy and de-

lay information. A smart intersection (agent) controls the traffic signal phase, as

well as the activation of the upstream bus lanes in both directions of a main artery

based on the observed passenger delays, giving priority status (weight) to bus pas-

sengers. The agent takes an action about all three decisions every timestep. The

objective of the agent is to minimise the weighted total passenger waiting time.

At thecorridor level, theproposedDeepReinforcementLearning (DRL)modelpromises

to effectively manage traffic signals in multi-modal networks, by capturing the

complex interactions between private car traffic and bus transit and adapting to

different road configurations. Themodel simultaneouslyminimizes the trafficde-

lay and bus headway variations and can accommodate different road layouts, in-

cluding dedicated bus lanes and mixed traffic lanes. The cooperation between in-

tersections is achieved by sharing action data among neighbours. Scalability and

portability are demonstrated by transferring trained models to other similar in-

tersections, reducing the training costs in an extensive transportation system. A

large benchmark over the most representative methods including the centralized

DRLmethod is performed in numerical experiments.

At the network level, a two-layer control framework is developed to improve traf-

fic signal control performance in congested networks. This framework combines

the benefits of Max Pressure(MP) and Perimeter Control (PC) strategies and ad-

justs the green times of intersections based on real-time queuemeasurements. In

the upper layer, perimeter control is applied in an aggregated scale between a set

of homogeneously congested regions. At the end of every control cycle, the con-

troller, based on inputs of aggregated regional vehicle accumulation, specifies the

target inter-regional exchange flows for the next cycle, which are translated into

the respective inter-regional green times between every pair of adjacent regions.

In the lower layer, distributed control basedonMaxPressure regulator is applied to

a set of eligible intersections, in the interior of the regions. This set can contain all

or a fraction of signalized intersections of the region, with the exception of those
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used for PC (if PC is applied in parallel).

As a clear instance of decentralisation, the two-layer signal control framework

entails combining centralized, aggregated perimeter control strategy, with par-

tial and effcient distributed control. MP controllers do not communicate with each

other or with any central control unit, but operate independently based on queue

measurements directly upstream and downstream the controlled intersections, by

adjustinggreen timesof the approaches accordingly, at the endof every control cy-

cle. Thecontrol layersdonotexchange information, however their combinedeffect

is indirectly considered by both controllers through the real-time trafficmeasure-

ments that they receive as inputs.

In a multi-modal context, we propose two bus prioritization strategies, Intermit-

tent Dynamic Bus Lanes (IDBL) and Adaptive Bus Lane Density Control (BLDC),

which are developed using reinforcement learning to allocate road space between

buses and vehicles in real-time. The algorithms are trained to minimize bus de-

lays and ensure that the travel time of vehicular traffic is not significantly affected.

Reinforcement Learning gives the ability to bus-agents to learn the correlation be-

tween prevailing traffic conditions and expected transit delays. The results’ anal-

ysis showed that both methods manage to minimise transit delays even in higher

demand scenarios while maintaining the disturbance of vehicular traffic close to

mixed traffic conditions. We also implement Dynamic Bus Lanes (DyBL) in combi-

nation with perimeter control and evaluate different control algorithms and sys-

tem architectures in terms of network performance, aiming at minimizing total

passenger travel time. A simple dynamic controller is configured for controlling

DyBL car inflow and implemented via microsimulation for a realistic network and

demand scenario, in combination with a simple two-region perimeter control.

The above-mentioned traffic control approaches exemplify the possible ways of

enhancingexistingdistributed control structures inmanyexistingdistributed sys-

tem, such as the Integrated network management (INM) system of the Utrecht

pilot. In a multi-model, multi-scale transportation system, the successful im-

plementation of these novel control strategies relies on the data and information

transmission between different scales and modes. For instance, in Chapter 3, the

hierarchical traffic signal control relies on the availability of data from network

traffic monitoring with different granularity. Meanwhile, the dynamical bus lane

approaches of IDBL andBLDC in Chapter 5 highlight the benefit of information ex-

changing between different modes. Whereas in many existing systems, such as

INM, such interactions are often ignored or underestimated.

Motivated by this observation, the report envisions that the currently functioning

system, Integrated network management (INM), in the Utrecht pilot will be fur-

ther enhanced with the concept developed in DIT4TraM. First, traffic information

from different travel modes can be integrated, such as bicycle traffic, to facilitate

better inform control decisions with aspects of multimodality. Second, in order to
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be able to take full advantage of additional data sources, chiefly Floating Car Data

(FCD) canbe intergated. Withmore data, the selection and assignment of intersec-

tion taskswould be based on the status of the trafficnetworkwith the development

in Task 3.2 of DIT4TraM, i.e., the Jam Tree approach. When a Jam Tree is detected,

by tracking its spatiotemporal evolution, the approachwill allow identifyingwhich

intersections contribute to the target bottleneck, and guide the appropriate distri-

bution of tasks leading to optimal bottleneck resolution.
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1 Introduction

In recentdecades, significantprogresshasbeenmade indeveloping real-time traf-

fic management strategies that improve performance in heavily congested net-

works with time-dependent traffic characteristics. Local adaptive strategies that

are commonly used are based on heuristic optimization techniques. Due to the ac-

curacy and computational burden challenge, such methods have become less ef-

fective in handling congestion propagation and queue spillbacks. The distributed

control architecture, which originated from communication systems and produc-

tion processes has gained increasing attention in traffic control recently. In the

context of passenger-orientedmobility, it has become increasingly relevant to de-

velop more practicable decentralized network-wide control strategies. Such con-

trol schemes act locally in coupled intersections and have been proven (under cer-

tain conditions) to stabilize the network conditions.

1.1 Scope of this deliverable

This deliverable is part of the DIT4TraM’s work package 3 “Cooperative multi-

classdistributed trafficmanagement”andcorresponds to task3.1“Passenger-oriented

distributed control strategy for large-scale urban systems”. Theobjectives ofTask

3.1 are to design and implement a set of distributed algorithms that can govern a

transportation network. We focus on developing local regulators that communi-

cate with each other to reach an agreement on their control decisions, in order to

ensure local cooperation towards the achievement of city-level mobility goals.

The approach is based on distributed optimization and takes into account human-

oriented considerations, whichmakes it go beyond current practices. Information

exchange between the local regulators will be carefully designed to ensure that in-

teraction effects are integrated at the local level. The systemwill be designed with

flexibility inmind, allowing for the self-organizationof the individual components

while ensuring sufficient compliance. At the same time, the operator will have the

ability to manage the system at the overall level and optimize capacity utilization.

Part of the algorithms and mechanisms will be tested and demonstrated both in

various simulation environments and in the Utrecht pilot project, with a focus on

distributed traffic signal control for multi-modal transportation. EPFL will work

closely with NTUA and UGE to design the algorithms and mechanisms for various

systemconfigurations, whichwill be integrated into the unified framework of Task

3.4.

Furthermore, this report emphasizes designing the proper distributed architec-

tures and informationexchange requirements fordifferentDIT4TraMsubsystems,

which achieves better efficiency and resiliency. Motivated by the benefits of dis-
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tributed approaches, we develop distributed control architecture for different ap-

plicationsandmodes in transportationsystems, includingpassenger-orienteddis-

tributed control, auctioning schemes for multimodal mobility services, coopera-

tive schemes for local bottleneck control andfinally trafficmanagementplatforms.

1.2 Structure of the deliverable

In this report, Chapter 2 presents a passenger-oriented intersection level frame-

work of Integrated Signal and Bus Lane Control (ISBLC). Chapter 3 introduces a

distributed traffic signal control model with deep reinforcement learning (DRL)

for a multi-modal corridor-level network consisting of private car traffic and bus

transit. Chapter 4 examines the effectiveness of the network-wide parallel ap-

plication of perimeter control (PC) and (max pressure) MP strategies embedded

in a two-layer control framework in a link-based macroscopic simulation envi-

ronment. Chapter 5 develops two learnable, highly scalable and transferable bus

prioritisation strategies using reinforcement learning under a connected environ-

ment in urban corridors. Chapter 6 describes the platform and the location for the

pilot of Utrecht and envisions the potential extensions based on the existing sys-

tem. Finally, Chapter 7 includes the conclusions.
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2 Intersection-level control

2.1 Introduction

During the last years, the advent of connectedvehicle technologyand smart infras-

tructure [1]has creatednewopportunities for smarter andmoreefficient intersection-

level control that leverages Vehicle-to-all (V2X) real-time communication capa-

bilities for traffic informationexchange, enablingmore informeddecision-making

[2]. A significant amount of research is focused on creating adaptive schemes that

aim to improve vehicle traffic at intersections (e.g., [3], [4]). However, most ap-

proaches do not distinguish between flows of differentmodes and are oriented to-

wards the optimisation of vehicle traffic, not taking into account the challenging

dynamics of a multimodal system. The future of transport, driven by the growing

recognition of the benefits of a more sustainable, efficient, and equitable trans-

portation system, is likely to be increasinglymultimodal, especially as the popula-

tion grows and cities become more congested. Therefore, in order to meet the di-

verse needs of all users in a fair way, passenger-oriented traffic and networkman-

agement frameworks need to be explored.

In this chapter, we propose a novel passenger-oriented intersection level frame-

work, namely Integrated Signal andBus Lane Control (ISBLC), which aims tomax-

imise the passenger throughput of intersections, while ensuring the stability and

smooth operation of public transport. Onewould expect these two objectives to al-

ways be aligned. It is not unusual, however, especially at local intersection level,

that thenumberof vehicle passengers significantly exceeds thenumberof buspas-

sengers, leading to a misalignment of interests between the two. The ISBLC dy-

namically adjusts traffic signals and simultaneously assigns dedicated bus lanes

to upstream lanes of the intersection, based on the observed traffic conditions, as

well as the information it receives from V2I communication regarding vehicle/bus

passenger occupancy and bus delays. With that information in hand and combined

with a state-of-the-art reinforcement learning algorithm, ISBLC objective is to

reduce total passenger waiting time, while providing the highest level of service

for public-transport passengers. Results of ISBLC are compared with traditional

traffic signal and bus prioritisation approaches to provide insights into the effec-

tiveness of the proposed approach and inform future research towards passenger-

oriented andmulti-modal traffic control schemes.

2.2 Integrated Signal and Bus Lane Control
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2.2.1 Concept

In the ISBLC scheme, a smart intersection-agent, operating in a connected envi-

ronment controls the traffic signal aswell as the activation-deactivation of the up-

stream bus lanes in both directions based on the prevailing traffic conditions and

information on passenger occupancy per vehicle and bus delays defined as the de-

viation fromagiven static bus timetable. An illustrative example of a configuration

of an ISBLC intersection is depicted in Figure 1.

Figure 1: Configuration of an ISBLC intersection. The red and green stripes rep-
resent an activated and deactivated upstream bus lane, respectively. Right turn
vehicles are always allowed within the last 80 metres.

The way ISBLC operates is described as follows. The intersection starts receiving

information from incoming buses at a predefined time t before their projected ar-

rival (100 seconds) to the relevant upstream edge of the intersection. This pro-

vides the traffic signal agentwith crucial additional time to evacuate the bus lane if

needed. The incoming buses report the number of passengers and an already accu-

mulated delay from previous locations of a hypothetical traffic network ”outside”

the intersection. When the bus enters the intersection, it reports to the ISBLC traf-

fic signal its passenger volumeanddelay basedonabaseline bus timetable for a bus

stop that is placed on the downstream approach of the intersection (including the

delayoutside the intersection). According to the abovedescribedobservation com-

bined with the prevailing passenger-oriented traffic conditions, the traffic signal

decides which will be the next green phase and if the upstream bus lanes will be

activated or not, separately.

If a bus lane gets activated, all relevant vehicles are informed. Vehicles in the ad-

jacent lanes are not allowed to enter the bus lane anymore. Vehicles within the bus

lane check their adjacent lane for following and leading neighbouring vehicles. If

they observe a gap of sufficient length between the leading and trailing vehicles

(Figure 2), they get instructed to change lane. If the gap is not sufficient, they con-

tinue straight until lane changing is possible again. If a vehicle got an instruction
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to change lane but could not follow through, the vehicle continues straight until

lane changing is possible again. Moreover, if the lane area upstream of the bus is

not activated as a bus lane by the traffic signal for an upcoming bus, all vehicles

are allowed to enter behind the bus. When the bus lane is deactivated, vehicles in

the adjacent lanes and vehicles on the (possibly) previously activated bus lane are

informed that they are allowed again to enter or stay on the bus lane, respectively,

and no other restrictions take place. It should be noted, that right turn vehicles

are allowed within the last 80 meters of an activated upstream bus lane and thus

they are excluded from any exit-instruction. This approach is designed in such a

way that it can easily be extended to large corridors with consecutive ISBLC inter-

sections, where every intersection controls its traffic signal and the activation or

deactivation of its upstream bus lanes.

Figure 2: Evacuation of an upstream bus lane in an ISBLC intersection.

Drivers are assumed to be fully compliant to the given instructions. This means

that drivers outside the activated bus lane will never enter and drivers inside will

always seek to change lanes when requested, but conduct a lane change only when

conditions are suitable for a safe lane change, i.e. they operate as they would nor-

mally do. Finally, it is assumed that drivers are truthful anddon’t exhibitmalicious

behaviour. This simply means that they will never misreport the number of pas-

sengers inside the vehicle.

2.2.2 Deep Reinforcement Learning ISBLC Controller

In this work, the Proximal Policy Optimization (PPO) [5] algorithm is utilised as a

reinforcement learning approach to address the problem of traffic signal control

at intersections. Proximal Policy Optimization is a state-of-the-art on-policy and

model-free reinforcement learning algorithm that belongs in the policy-gradient

methods. It aims to find a balance between exploration and exploitation in order to

improve the training stability by updating the policy in a local, proximal manner,

avoiding “too severe” policy updates.
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The structural components of the agent, namely the state, action and reward, are

defined as follows. The agent observes a state s in each step (step duration = 5sec).

The state s can be divided in twoparts. A traffic signal related and a bus lane related

one. Concerning the traffic signal related state, per green phase (4 green phases

in total) the following are given: the number of total passengers N
[phase]
p , the to-

tal number of waiting passengers q
[phase]
p and the total waiting time of passengers

W
[phase]
p . All described values are measured within a distance from the traffic light

(200metres) and the bus passengers are also included. Moreover, it is given if the

phase was activated or not (1 or 0) during the previous step act
[phase]
prev , if the phase

during the current step is activated or not (1or 0) act
[phase]
cur andfinally thenumber of

consecutive activations of the phase n
[phase]
act . Concerning the bus lane related state,

per bus lane (2 in total) the following are given: the previous bus lane activation

state (0: activated, 1: deactivated) blprev, the current bus lane activation state (0:

activated, 1: deactivated) blcur, if the related to the bus lane phase was activated or

not (0 or 1) during the previous step phaseblprev, if the related to the bus lane phase

was activated or not (0 or 1) during the current step phaseblcur, a noisy value of the

remaining time until the entrance of an upcoming bus in the relevant bus lane of

the intersection rte, the distance of the bus from the traffic signal dtl, the expected

arrival delay to the downstream bus stop delay, the number of vehicles in front of

the bus vehf and finally the number of passenger on the bus lane nbp. The state

space S is continuous andmore precisely S ∈ R42.

The traffic signal agent observes a state every 5 seconds and based on that takes

an action a. As was mentioned the agent has to take simultaneously 3 actions. One

related to the traffic signal (which will be the next green phase) and another two

for the bus lanes (0: activation and 1: deactivation). To avoid a large discrete action

space by combining the aforementioned actions, the action was designed to be a

multi discrete one. This means that from an RL perspective 3 actions are taken

simultaneously. The action can be defined as:

a =


atl ∈ {0, 1, 2, 3}
abl1 , abl1 ∈ {0, 1}
abl2 , abl2 ∈ {0, 1}

(1)

Thus, the action spaceA is defined asA = {0, 1, 2, 3} × {0, 1} × {0, 1}.

The reward is themost crucial component that drives the agent towards thedesired

objective. The objective of the traffic signal agent is tominimise the passenger av-

erage waiting time while alsominimising the reported bus delays based on a given

bus schedule. To that end, the reward consists of seven components as follows:

reward = rp + rb + rcbl + rmin
gt + rmax

gt + ro + rc (2)
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The first component is the negative average waiting time of all passengers which

accounts for the minimization of the passenger waiting time,

rp = −
∑n

phase=1W
[phase]
p∑n

phase=1 q
[phase]
p

, n = 4 (3)

The second component is the negative expected arrival delay per bus lane, which

is taken into consideration only when a bus has entered the intersection’s edges,

weighted by the number of bus passengers and is the component that accounts for

bus prioritisation,

rb = −

 2

1 + 1
nbpi

 k∑
j=1

|delayj | , ∀ bus j on bus lane i, i ∈ {1, 2} (4)

To avoid severe bus lane state changing (for both bus lanes), a small negative re-

ward (third component) was given every time that the agent’s action resulted in

bus lane activation state change,

rcbl =

{
−5, if blprev 6= blcur

0, otherwise
, ∀ bus lane i, i ∈ {1, 2} (5)

The fourth component is to ensure aminimumgreen time for each phase by giving

a negative rewardwhen the number of consecutive phase activations is less than 2.

rmin
gt =

{
−50, if n

[cp]
act < 2

0, otherwise
, cp = current active phase (6)

The fifth component is to also ensure amaximumgreen per phase by giving a neg-

ative reward that increaseswith the number of consecutive phase activations. This

givesmore flexibility to the traffic signal to exceed themaximumgreen in order to

prioritise a bus if needed.

rmax
gt =

(
n
[cp]
act − 10

)1.3
× 30, cp = current active phase (7)

The sixth component is the left turn overflow penalty. It is important, in order

to maximise the efficiency of a prominent bus lane activation, to avoid left turn

overflows that will create gridlock phenomena. Thus, a negative reward is given

for left turns when overflow is observed.
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ro =

{
−10, if overflow = True

0, otherwise
, ∀ protected left turn i, i ∈ {1, 2} (8)

Finally, the seventh and last component concerns the constraint of the option of

bus lane activation when there is no bus on the upstream edges of the intersection

or at least approaching. For that reason, a negative reward is givenwhen any of the

bus lanes is activated in a situation like the aforementioned one.

rc =

{
−10, if no bus is detected

0, otherwise
, ∀ bus lane i, i ∈ {1, 2} (9)

2.3 Implementation

2.3.1 Description of the testbed intersection

SUMO (Simulation of Urban MObility) [6] micro-simulation framework is used to

create an artificial 4-leg intersection (Figure 3). The approaches of the main road

have a length of 400 metres and consist of 3 lanes plus one extra reserved lane for

left turn with an 80metres length. The secondary roads’ approaches have a length

of 250 metres and consist of 2 lanes. One bus stop is placed on each of the main

road’s downstreamedges. The traffic signal has a 4-phase programwith protected

left turns.

2.3.2 Baseline Traffic Demand Scenario and Bus Timetable

Derivation

Initially, a two-hour baseline traffic demand scenario, which resembles to normal

traffic conditions and corresponds to approximately 400 veh/hour per lane for the

main artery and 150 veh/hour per lane for the secondary roads is initialised. The

derivation of the bus timetable is based on the baseline scenario. In more detail, a

two-hour simulationusing the baseline scenario’s demandwith awarm-upperiod

of 15minutes was run for 100 timeswith random seeds. The bus timetable resulted

as the meanmeasured arrival time for each bus stop (2 in total).

2.3.3 Training Setting

The PPO traffic signal agent was trained by interacting repeatedly with the two

hour simulation. For the creation of vehicles’ passengers a discrete distribution

was made with 1.6 mean passengers per vehicle. Regarding the generation of bus

passengers we hypothesise that traffic demand follows roughly the same pattern

15 DIT4TraM_D3.1_Passenger_v0.1



Figure 3: Layout of the ISBLC intersection.

with bus passenger demand, i.e. when traffic demand increases, the bus passenger

demand increases also. Thus, bus passengers are generated fromagaussiandistri-

butionwithmean equal to 50passengers and a standard deviation of 20passengers.

The generated value is clipped by theminimum andmaximum number of passen-

gers. Themaximum number of passengers is bounded by the capacity of the buses

whichwas set to be equal to 100 (12metres bus). Theminimumnumber of passen-

gers was set to 30. We call the above described distribution, baseline distribution

and corresponds to the baseline scenario.

Inorder to increasegeneralisation,we followastructuredwayofdesigningepisodes

explained below. First, a 12 buses per hour demand (per direction) was created and

the bus timetables were derived as discussed. In order to avoid the overfitting of

the agent to the bus schedule in each episode each created bus was chosen using a

Bernoulli distribution. Thus, each bus was entering the simulation with probabil-

ity 0.5. Second, the chosen buses to enter the simulation were entered with a delay

that follows a truncated gaussian distribution from 0 to 120 secondswithmean de-

lay equal to 60 seconds and a standard deviation of 20 seconds. Third, the demand

of each episode is generated as a random scale of the baseline scenario demand

ranging from 1.0-1.8. The same logic is followed for the generation of bus passen-

gers where the baseline distribution is shifted proportionally to the demand scale.

Of course, the maximum number of passengers is always constrained by the given

bus capacity. Finally, the demand scale was changing randomly (1.0-1.8) during

the simulation (every 15 minutes).
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The benefits of parallel environments in reinforcement learning are well known

[7], [8]. Parallelisation can greatly boost the training process as more samples

are collected in unit time. Moreover the independent collection of data can lead

tomore diverse and comprehensive training data, leading to better generalisation,

improved performance, faster convergence, and an important reduction in train-

ing time. For that reason, a synchronousenvironmentparallelisation isperformed,

which resulted in less than 90minutes training time until convergence.

2.3.4 Evaluation Process

To evaluate the developed method, 9 two-hour simulation scenarios, with a bus

demand of 12 buses per hour per direction on the main artery and an initial traf-

fic demand scale varying from 1.0 to 1.8 (step 0.1) are executed 10 times each (with

randomseeds) and the extracted results are averaged. Moreover, the buses are ini-

tialisedwith a randomdelaywith ameandelay equal to 60 seconds (with a standard

deviation of 10 seconds) to test if the proposed method can reduce the accumu-

lated delays “outside” the intersection. Finally, both vehicle and bus passengers

aregenerated following the sameprinciples thatwerediscussed in the training set-

ting subsection.

The proposed method is compared with four alternative well established methods

to evaluate its efficiency; static traffic signal control optimised by Webster’s for-

mula [9], Webster traffic signal control combined with dedicated bus lanes, actu-

ated traffic signal control [10] and finally, actuated traffic signal control combined

with dedicated bus lanes. Webster’smethod is a commonly used approach for traf-

fic signal control. It involves using a fixed schedule to control the traffic signals,

which is optimised based on Webster’s formula to determine the optimum cycle

length and green times per phase of a traffic signal. Actuated signal control re-

lies on sensors, such as inductive loops or cameras, to detect the presence of ve-

hicles at the intersection. Based on the detected presence, the traffic signal timing

is adjusted accordingly to optimise the trafficflow, reduce delays, and improve the

overall performance of the intersection.

2.4 Findings

To evaluate the compliance with the derived bus timetable, the Mean Arrival Time

Deviation is depicted in Figure 4. ISBLC is by far the best method keeping the bus

delay below 75 seconds for all demand scales. With an initial mean delay of 60

seconds it can be extracted that for demand scale below 1.6 alleviates completely

the delay occurred to the bus by the intersection and for demand scale below 1.5

manages to mitigate the initial delay “outside” the intersection reaching approx-

imately a 20 seconds reduction for demand scale 1.0.
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Figure 4: Mean arrival time deviation from timetable.

The Total Travel Time and Depart Delay (TTTDD) [11] metric is considered to be

one of themost suitablemetrics for a fair comparison ofmethods which are tested

in a fixed simulation time regarding vehicular traffic and is defined as:

TTTDD = TotalTravelT ime+ TotalDepartDelay (10)

Where TotalTravelT ime denotes the total travel time of passengers inserted in the

simulationwith the passengers generated during thewarmupperiod excluded and

the TotalDepartDelay denotes the total departure delay of the inserted passengers

as well as of the passengers waiting to be inserted into the simulation. Again, the

passengers generated within the warm up period are excluded.

Thus, to evaluate the impact of ISBLC on vehicular traffic the average travel time

and theTTTDDmetric of vehicle passengers are depicted in Figure 5. For bothmet-

rics, ISBLC is shown to be the bestmethod for all the demand scales concerning the

vehicular disturbance.

To investigate the favouring of ISBLC for bus passengers over vehicle passengers in

the context of transit prioritisation, the averagewaiting time of vehicle passengers

and bus passengers is depicted in Figure 6. As one can observe, the averagewaiting

time of bus passengers is negligible and the difference in average waiting time is

retained above 12 seconds for all demand scales. Comparing bus passenger aver-

age travel time and TTTDD between allmethods (Figure 7), ISBLC outperforms the

othermethods. The succeeded transit prioritisation of ISBLC can be also extracted

by comparing the results of Figure 5 and 7 where the difference in improvement

for bus passenger from vehicle passenger results, is noticeably greater. Moreover,

from these twofigures is evident that ISBLC is the bestmethod regarding the over-

rall passenger traffic.
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(a) (b)

Figure 5: Average travel time (a) and TTTDD (b) of vehicle passengers.

Figure 6: Average waiting time of bus passengers and vehicle passengers for
ISBLC.

(a) (b)

Figure 7: Average travel time (a) and TTTDD (b) of bus passengers.

Finally, an analysis is conducted for the bus lane activation by ISBLCmethodwhich
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is depicted in Figure 8. It can be seen (Figure 8 (a)) that there is a rather descending

pattern regarding the number of bus lane activations as the demand scale ascends.

This can be explained by the fact that the impact of bus lanes on vehicular traf-

fic is more intense as demand increases. Moreover, the ratio of vehicle passengers

to bus passengers is increasing and the objective of the ISBLC except for the com-

pliance with timetables is also to improve overall passenger traffic. On the other

hand, in Figure 8 (b) the percentage of consecutive bus lane activations for larger

demand scales seems to also increase. Although, this is difficult to analyse in detail

because the results came from a complex training process, it seems to be benefi-

cial to reduce the total number of activations but lengthen the time of activation

as this confines the disturbance on vehicular traffic (frequent short-timed activa-

tions with high traffic demand create intense lane changing behaviour). Another

reason for the prolonged bus lane activations for higher demand scales, is that the

evacuation of a bus lane, with the increase of traffic demand, requires more time

due to the limited space in the adjacent lanes which subsequently results in fewer

successful lane changes.

Figure 8: Bus lane activation analysis. (a) Number of bus lane activations per de-
mand scale; (b) Frequency of consecutive bus lane activations per time interval.

2.5 Concluding remarks

Thiswork proposed a novel approach for intelligent intersection-level control (IS-

BLC) by combining traffic signal and upstream bus lane control with the objec-

tive to maximise passenger throughput while prioritising transit by minimising

reported transit delays based on a given schedule. Reinforcement learning is used

because of its ability to learn in complex dynamics, such as traffic dynamics, that

are difficult to be modelled by analytic methods. It allows the system to learn and

adapt to continuously changing traffic conditions and demands in real-time while

enabling the proposed scheme to continuously improve its decisions based on the

consequences of previous actions, leading to more efficient and effective traffic

management.
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The results indicated the excellent performance of ISBLC as it manages to balance

betweenoptimisingpassenger trafficand transit prioritisation. However, there are

somestrongassumptionsand limitations. First, a fully commentedenvironment is

assumed for the provision of necessary information as input to the ISBLCmethod.

Thus, to implement such a scheme in the field, a number of prerequisites must be

met, including a great penetration of connected vehicles, smart infrastructure, and

robust communicationnetworks. Moreover, a 100%drivers’ compliance rate is as-

sumed. This could lead to optimistic results as in reality, drivers may deviate from

the intended behaviour due to various reasons such as personal preferences, etc.

These drawbacks of course could be surmounted under Connected and Automated

Vehicles (CAVs) which eliminate the human factor. Another limitation is that IS-

BLC was tested in a single intersection.

In future research, the proposed method will be tested on various connected ve-

hicles penetration and drivers’ compliance rates. Moreover, this work will be ex-

tended to an urban corridor level and various bus demandswill be testedwith fixed

and dynamic bus timetables. Another interesting direction is to extend ISBLC to

intersections where a bus lane exists in all directions.
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3 Corridor-level control

In this chapter, we present a distributed traffic signal controlmodel with Deep Re-

inforcement Learning (DRL) for a multi-modal corridor-level network consisting

of private car traffic and bus transit, which is developed by UGE. The model si-

multaneously minimizes the traffic delay and bus headway variations and can ac-

commodate different road layouts, including dedicated bus lanes andmixed traffic

lanes. Cooperationbetween intersections is achievedby sharing actiondata among

neighbours. Scalability and portability are demonstrated by transferring trained

models to other similar intersections, reducing the training costs in an extensive

transportation system. A large benchmark over the most representative methods,

including the centralized DRLmethod, is performed in numerical experiments.

In the followingsubsections, the formulationsof theagent’sdesign, numerical test

settings, sensitivity analysis of the tradeoff between two objectives, and test re-

sults are described.

3.1 Agent design

In the proposed distributed control algorithm, the agent is a traffic signal con-

troller associatedwithan intersection inacorridornetworkequippedwithbus lines.

The agent’s action involves allocating the green to one of the predefined phases for

the following decision step. If the action chosen differs from the last action, the

yellow and integral red phase of five seconds is activated. Agent’s state and reward

need to be modeled with both real-time car traffic state and bus operation infor-

mation.

3.1.1 Agent’s state

The agent’s state space Si,t = [Straffic
i,t , Stransit

i,t , Scoop
i,t ] consists of the state observa-

tion for three components: car traffic, bus transit, and cooperativeness.

The car traffic state Straffic
i,t = [Di,t, Oi,t] represents the total waiting time of ve-

hicles, Di,t, and the occupancy of each incoming leg, Oi,t, of the intersection i at

decision step t. As depicted by Equation (11), Di,t results from the total number of

stopped vehicles for all incoming legs within decision step t.

Di,t =
∑
∀t′∈t

∑
∀m∈Mi

nmi,t′ (11)

where nm
i,t′ is the number of halting vehicle on themth incoming leg of intersection

i at time t′.
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Thebus transit stateStransit
i,t = [hfi,t, h

b
i,t] is the forwardandbackward spaceheadway

of the bus on the incoming leg of intersection i at decision step t. Note that the op-

timal bus service is usually obtained when time headways are homogeneous. This

also applies to space headways. The bus control strategy tries to equalize forward

and backward space headways for all buses.

If the bus is too far from the signal, the signal’s latest action does not contribute to

bus service, so the agent should take action regardless of the bus state. When a bus

distance to the traffic signal is below the control distance (for bus transit), di,t, the

agent has to find the tradeoff between car traffic-related and bus transit-related

objectives by activating the reward for bus transit. The control distance, di,t, is a

parameter defining the maximal distance at which the agent i needs to consider

the impacts of incoming buses while computing the upcoming decision/action.

The calculations of control distance in dedicated bus lanes and mixed traffic lanes

are different. The control distance for bus lanes is defined by the maximum value

between the distance for a bus decelerating to stopwith an acceptable deceleration,

according to themovement equation, and the distance for a busmoving forward at

maximum speed during a decision step, defined by Equation (12):

d′i,t = max { v
2
max

2adec
, vmax∆t} (12)

where vmax is the speed limit for buses, adec is the acceptable deceleration for buses

approaching to stops and∆t is the time span of a decision step.

For the mixed lane, the control distance is defined according to the speed of the

bus, as Equation (13) displays. vcri is the predefined critical speed for a bus. If the

bus is at a low speed and queuing in a line, the action of the signal can influence the

queue and then the bus, no matter how far the bus is from the intersection. Thus,

the control distance is the distance between the bus and the intersection, xbi,t. If the

bus is running at a normal or high speed, the control distance is calculated based

on the formula in Equation (12). The control distance in the mixed traffic lane is

given by:

d′′i,t =

 xbi,t, vi,t < vcri

max {v2max
2adec

, vmax∆t}, vi,t ≥ vcri
(13)

If the bus is outside the control distance or there is no bus on the incoming leg,

the forward and backward space headways are set to 0. When several buses are on

the same leg, only the state of the bus closest to the signal is collected. To exclude

the situation where a dwelling bus is regarded as queuing, the critical position at

which the bus speeds up to vcri departing from a stop is defined. If the bus distance

is greater than the critical position distance to the traffic signal, the bus state is set
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to 0. Thus, if xbi,t > xsi −
v2cri
2aacc

, Stransit
i,t = [0, 0].

Stransit
i,t can be concluded as Equation (14):

Stransit
i,t =

{
[hfi,t, h

b
i,t], xbi,t < min {di,t, xsi −

v2cri
2aacc

}
[0, 0], otherwise

(14)

The cooperativeness state Scoop
i,t = [ai−1,t−1, ai,t−1, ai+1,t−1, n

y
i,t] consists of 3 com-

ponents:

• the last action of agent i: ai,t−1;

• the set of actions taken by the immediate neighborhood of agent i: here, the

two neighbors (ai−1,t−1, ai+1,t−1) ; and

• the number of switches from one phase to another during the last ten action-

steps for agent i: nyi,t, this variable monitors how frequently the controller

changes phases. If the switches are too frequent, a large amount of the avail-

able capacity is lost due to yellow and integral red phases. It is important for

controllers to consider this information in their decision-making process as

it is not reflected in the other state variables.

3.1.2 Agent’s reward

The same variables as the agent’s state are used to define the reward function to

enhance traffic efficiency at the intersection and to homogenize (keep constant)

bus headways. Thus, the reward provides feedback regarding three dimensions,

ri,t = rtraffici,t +ragenti,t +crtransiti,t , matchingwith a performance evaluation according

to car traffic, rtraffici,t = r′traffici,t + r′′traffici,t , the bus system, rtransiti,t , and the capacity

loss due to the agent’s past actions, ragenti,t . c is a predefined positive integer repre-

senting the weight of bus transit in the reward function.

For car traffic, the agent aims to minimize the total waiting time and to limit the

density of stopped vehicles on each incoming leg. Therefore, the total waiting time

and the occupancy at the current decision step and the last step are compared to

decide the reward, as Equations (15) and (16) show, where Ocri is the predefined

critical occupancy. At intersection i, the r′′traffici,t has to be calculated for all incom-

ing legs with a red phase assigned during the last decision step.

r′traffici,t =

{
1, Di,t < Di,t−1

−1, Di,t ≥ Di,t−1
(15)
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r′′traffici,t =

{
0, Oi,t < Ocri

−1, Oi,t ≥ Ocri
(16)

Agents try to avoid wasting green time due to frequent phase switches. Thus, the

reward for the agent’s action is given by Equation (17), where y is a predefined in-

teger (0 < y < 10) representing the acceptable number of phase switches in 10

steps.

r′′traffici,t =

{
0, nyi,t ≤ y

−1, nyi,t > y
(17)

For bus transit, if hfi,t > hbi,t, the bus needs to be prioritized to shorten the forward

headway, thus equalizing the forward and backward headways. In this case, the

transit reward is positive if the agent gives green priority to the bus-incoming lane

in the following decision step. Similarly, in the case hfi,t < hbi,t, the bus needs to be

held to equalize the forward and backward headways. The bus system reward can

be concluded as Equation (14), where gbusi is the action that gives green priority to

the bus-incoming leg at intersection i.

rtransiti,t =


1, hfi,t−1 > hbi,t−1 and ai,t−1 = gbusi

1, hfi,t−1 < hbi,t−1 and ai,t−1 6= gbusi

0, hfi,t−1 = hbi,t−1

−1, otherwise

(18)

3.2 Numerical test settings

In the followingsubsections, comparisonswith fouralternative trafficcontrol strate-

gies are implemented in our MARL framework. These traffic control strategies are

selected because of their proximity to our approach or their wide use in the litera-

ture or field operation:

• Fixed control [9],

• Longest queue first [12],

• Max pressure [13],

• Centralized RLmethod [14].

The analysis is performed according to two scenarios implemented in the SUMO

simulation framework [6]. The scenarios differ in the bus lane layout (dedicated

bus lane or mixed traffic lane).

Scenario 1: corridor networks with dedicated bus lanes:
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This scenario includes one bus line driving on a dedicated bus lane in the corridor

networks. To highlight the transferability of the strategies learned by the agents,

the algorithm is trained and tested on distinct road configurations but with agents

managing similar intersections. Therefore, there are five signalized intersections

in the training corridor network (Figure 9a) and ten in the test arterial (Figure 9b).

Four buses loop around the corridor network for the training process. All buses

take a U-turn at the terminal of the arterial and continue the route in the opposite

direction. In the test network, thenumber of buses is increased to eight tomaintain

a similar average space headway with the training network.

Scenario 2: corridor networks with mixed lanes:

The training and test networks are the same as the training network for scenario 1,

except that the bus lanes are converted into mixed lanes.

(a)

(b)

Figure 9: Network structures in scenarios 1 and 2. (a) Training arterial, (b) test
arterial.

3.3 Sensitivityanalysisof the tradeoffbetweencar

traffic and bus transit in scenario 1

Before comparing theperformanceof theproposedalgorithmwith thebenchmarks,

an optimal tradeoff between the objectives related to car traffic and the objectives

related to bus transit, modeled by the parameter c, needs to be determined. Con-

sequently, a sensitivity analysis of the tradeoff is performed. Different values of c

(ranging from 1 to 5) and two extreme cases are trained and tested with scenario 1.

In the two extreme cases, only the reward of car traffic or bus transit is taken into

account, represented by ‘RL – traffic only’ and ‘RL – bus only’, respectively. The

reward curves for all agents in each trainingmodel are shown in Figure 10. In each

case, they converge around 40 episodes of training.

Theaveragequeue lengthandstandarddeviationof space/timeheadways are com-
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Total reward of each agent during the training episodes in RL-based
models of (a) traffic only, (b) c = 1, (c) c = 2, (d) c = 3, (e) c = 4, and (f) bus only.

pared among these cases. The results are shown in Figure 11 and Table 1. Different

random seeds are set to obtain various traffic demands during the tests. The no-

tation of ‘RL - n’ refers to the proposed RL model with c = n. The average space

headway inTable 1 is always 1516mbecause thebuses travel in a loop, and the space

headway between the first and last bus is also taken into account. Thus, the aver-

age space headway is always the total length of a round trip divided by the number

of buses, also denoted as nominal headway.

According to Table 1, the best performances on traffic delay and bus headway con-

trol are always from ‘RL– trafficonly’ and ‘RL–bus only’, respectively, which de-

creases the average queue length and standard deviation of bus headway by 18.59%

and 33.74% compared to the best performance among the benchmarks. This tests

and proves the effectiveness of the proposed model both on car traffic control and
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on bus line control. A larger c value forces themodel to givemoreweight to the bus

than to the car trafficperformance in the reward. Thus, the car trafficperformance

might be affected. Figure 11 compares the total queue length of all control strate-

gies along the simulation process. The continuous increase in total queue length

is observed from ‘RL – traffic only’ to ‘RL - n’ and then ‘RL – bus only’. When c is

set to 3, car traffic and bus transit performances appear to be well-balanced in all

three tests. For the other values of c, only car trafficor bus performance is satisfied.

Thus, c = 3 is chosen in the sequel. With this setting, the car traffic and bus transit

rewards vary from-3 to 1 and -3 to 3, respectively. Bus transit has the sameweight

as car traffic in negative reward and a greater weight in positive reward.

3.4 Test results for scenario 1

The performance of the proposed algorithm is further compared to the benchmark

approaches. Table 1 presents the results of various simulation seeds in scenario

1. The average queue length of ‘RL - 3’ is always shorter than all the benchmark

approaches. In an average of the three tests, ‘RL - 3’ decreases the average queue

length by 30.91%, 19.59%, and6.80%compared to thefixed control, longest queue

first, and max pressure, respectively. According to Figure 11, the max pressure

method performs slightly better than ‘RL – 3’ during the first half of the simula-

tion. When the demand in crossroads increases during the secondhalf of the simu-

lation, ‘RL – 3’ becomes better than themax pressuremethod and obtains a better

overall performance.

For bus headway control, ‘RL – 3’ also outperforms all benchmark strategies. The

space headways of the control strategies in the test with a random seed=25000 can

be seen in Figure 12. Figure 12 displays the travel distance of each bus during the

simulation. Two lines approaching each other or even crossing each other means

that busbunchingoccurs. This phenomenon is observed in the trajectories of buses

1 and 2, buses 4 and 5 in the longest queue first approach, while it is observed for

buses 1 and 2, buses 7 and 0 in themax pressure strategy. On the contrary, the RL-

based methods effectively prevent buses from bunching. The percentage of small

headways (less than 50%nominal headway) is calculated for each control strategy.

They are 17.64%, 16.12%, 6.96%, and 3.03% for longest queue first, max pressure,

‘RL – 3’, and ‘RL – bus only’, respectively. The proposed approaches provide a

significant improvement.

3.5 Test results for scenario 2

In this scenario, a centralized RL method from [14] is tested to compare with the

proposed distributed RL algorithm since their goals are similar, namely: attempt-
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(a)

(b)

(c)

Figure 11: Comparisons of queue length during the simulation in scenario 1 when
(a) random seed = 15000, (b) random seed = 20000, and (c) random seed =
25000.
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Table 1: Test results of each control method in scenario 1.

Random seed Control method Average queue length (vehs)
Space headway Time headway

Average

(m)
Standard deviation

Average

(s)
Standard deviation

15000

RL - traffic only 163.11

1516

858.72 208.01 105.74
RL - 3 179.59 517.94 194.64 49.89

RL - bus only 563.33 394.29 207.30 42.74
Longest queue first 250.48 872.79 197.20 103.59

Max pressure 200.36 595.03 200.74 68.67
Fixed 273.41 778.38 204.44 95.67

20000

RL - traffic only 190.62

1516

1098.14 207.85 143.25
RL - 3 210.41 501.20 193.66 49.49

RL - bus only 596.62 417.91 207.79 41.34
Longest queue first 248.38 742.21 196.60 85.60

Max pressure 224.94 620.76 200.83 69.16
Fixed 301.24 773.84 204.44 95.20

25000

RL - traffic only 189.39

1516

818.38 203.81 100.57
RL - 3 219.02 508.05 191.33 50.07

RL - bus only 585.20 389.02 207.71 41.41
Longest queue first 258.18 748.32 197.20 86.88

Max pressure 227.16 779.26 201.34 92.51
Fixed 305.35 778.64 204.44 95.63

ing to improve car traffic and bus performance through traffic signal control. In

the centralized method, the traffic flow environment is built with Cell Transmis-

sionMethod (CTM), amacroscopic and continuous platform. Since the traffic flow

environment in this research is microscopic and discrete, Edie’s definition is ap-

plied to the trajectory data to ensure a proper estimation of the density and outflow

in the centralized RLmethod [15], [16].

Figure 13 compares the queue length of each control method. According to the re-

sults in Table 2 and Figure 13, the performance of the centralized RLmethod is ac-

ceptable but still worse than the decentralized methods. In the centralized algo-

rithm, the reward definition ismore suitable for a continuous trafficmodel, which

does not encounter large fluctuations in the traffic and bus state over a short time

interval. When applied to the microscopic and discrete traffic model in this re-

search, lots of noise is added when estimating the traffic and bus state, whichmay

explain why the model underperforms compared to the initial results.

Compared tofixedcontrol and longestqueuefirstmethods, theproposeddistributed

RL algorithm decreases the standard deviation of space headway by 46.76% and

27.16%, respectively. For average queue length, the improvements are 9.30% and

13.55%, respectively.

Table 2: Test results of each control method in scenario 2

Control method
Space headway Time headway

Average queue length (vehs)
Average (m) Standard deviation Average (s) Standard deviation

Distributed RL

1637.78

392.98 283.35 64.00 124.50
Centralized RL 923.68 353.32 190.55 211.89

Fixed 738.18 273.88 118.28 137.26
Longest queue first 539.51 301.47 85.44 144.02

Max pressure 569.34 342.01 112.26 153.94
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(a) (b)

(c) (d)

Figure 12: Travel distance of buses along the simulation step in scenario 1. (a)
Longest queue first, (b) max pressure, (c) RL – 3, (d) RL – bus only.

3.6 Concluding remarks

This research proposes a MARL framework for traffic signal control in a multi-

modal corridor-levelnetworkconsistingofprivate car trafficandbus transit. Agents

are designed in a decentralized framework with a continuous state space, leading

to the implementation of deep reinforcement learning methods. The agents are

trained to reduce the vehicle queue length and balance bus headways simultane-

ously. The tradeoff between car traffic-related and bus transit-related rewards is

discussed via numerical experiments. When bus transit has the sameweight as car

traffic in negative reward and a greater weight in positive reward, the best perfor-

mances are achieved. The proposed model is tested in various corridor scenarios,

includingdifferent bus lane layouts (dedicatedbus lanes ormixed traffic lanes) and

road configurations. Both the scalability and portability are demonstrated with

several stochastic-demand tests and by transferring locally learned strategies to

similar intersection configurations. Compared to the best performance among the

centralized RL method and model-based adaptive control methods, the proposed

distributed RLmethod decreases the average queue length and the standard devi-

ation of bus headway by 13.55% and 27.16%, respectively, in the corridor network

with mixed traffic lanes.
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Figure 13: Total queue length during the simulation in scenario 2.
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4 Network-level control

Traffic-responsive signal control is a cost-effective and easy-to-implement net-

workmanagement strategy, bearinghighpotential to improveperformance inheav-

ily congested networks with time-dependent congestion. Max Pressure (MP) dis-

tributedcontrollergainedsignificantpopularitydue to its theoreticallyprovenabil-

ity of queue stabilization and throughput maximization under specific assump-

tions. Perimeter control (PC) based on the concept of Macroscopic Fundamental

Diagram (MFD) is a state-of-the-art aggregated control strategy that regulates

exchange flows between homogeneously congested regions, with the objective of

maintainingmaximum regional travel production and prevent over-saturation. In

this work, the effectiveness of network-wide parallel application of PC and MP

strategies embedded in a two-layer control framework is assessed in a link-based

macroscopic simulation environment. With the aim of reducing implementation

cost of network-wide MP without significantly sacrificing performance gains, we

evaluate partial MP deployment to subsets of nodes, indicated as critical by a node

classification algorithm that we develop, based on node traffic characteristics.

The proposed two-layer controller is structured as follows. In the upper layer,

perimeter control is applied in anaggregated scale betweena set of homogeneously

congested regions. At the endof every control cycle, the controller, based on inputs

of aggregated regional vehicle accumulation, specifies the target inter-regional

exchange flows for the next cycle, which are translated into the respective inter-

regionalgreen timesbetweeneverypairof adjacent regions. Thecontroller-specified

inter-regional green times are then translated to exact green times per approach,

for all PC controlled intersections, located on the boundaries between regions, by

taking into account the actual boundary queues. In the lower layer, distributed

control based onMax Pressure regulator is applied to a set of eligible intersections,

in the interior of the regions. This set can contain all or a fraction of signalized in-

tersections of the region, with the exception of those used for PC (if PC is applied in

parallel). MP controllers do not communicate with each other or with any central

control unit, but operate independently basedonqueuemeasurementsdirectlyup-

stream and downstream the controlled intersections, by adjusting green times of

the approaches accordingly, at the end of every control cycle. The control layers do

not exchange information, however their combined effect is indirectly considered

by both controllers through the real-time traffic measurements that they receive

as inputs. The mathematical formulations of both controllers are described in the

following subsections, followed by a brief description of the utilized traffic model

and traffic simulation process.

4.1 Max pressure control
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4.1.1 Algorithm description

The traffic network is represented as a directed graph (N,Z) consisting of a set

links z ∈ Z and a set of nodes n ∈ N . At any signalized intersection n, In and

On denote the set of incoming and outgoing links, respectively. The cycle time Cn

and offset are pre-defined and not modified by MP. Intersection n is controlled

on the basis of a pre-timed signal plan (including the fixed total lost time Ln),

which defines the sequence, configuration and initial timing of a fixed number of

phases that belong to set Fn. During activation of each phase j ∈ Fn, a set of non-

conflicting approaches vj get right-of-way simultaneously. The saturation flowof

every link z is denoted as Sz . The turning ratio of an approach between links i−w,

where i ∈ In, w ∈ On is denoted as βi,w and refers to the fraction of the outflow

of upstream link i that will move to downstream link w. The present version of

MP assumes that turning ratios are known to the controller. Also, it assumes that

phase sequencing is given as input and does not change during the control. Conse-

quently, during every cycle, all phases will be activated for a minimum time in the

same ordered sequence.

The control variables of this problem, denoted as gn,j(kc), represent the duration

of green of every stage j ∈ Fn of all controlled intersections n ∈ N . Assuming that

real-time measurements or estimates of the queue lengths and turning ratios are

available, the pressure pz(kc) of every incoming link z ∈ In of node n, at the end of

control cycle kc, is computed as

pz(kc) =

xz(kc)
cz

−
∑

w∈On

βz,wxw(kc)

cw

Sz, z ∈ In (19)

In Equation (19), xz(kc) denotes the average number of vehicles that are present in

link z during control cycle kc and cz denotes the storage capacity of link z. Queue

normalization aims at considering the link size, so that the pressure of a smaller

link is higher than that of a larger one with the same number of vehicles. In other

words, pressure takes into account the likelihood of link queues - upstream and

downstream - to spill-back in the following cycle. Pressures of all incoming links

are calculated at the end of every cycle based on the latest queue measurements,

which constitute the state feedback variables and are collected through proper in-

strumentation. Higherpressure indicateshigherpotential in trafficproduction, i.e.

significant volumewaiting to be served and enough available space in downstream

links to receive it. Low or close to zero pressure indicates lower need for right-

of-way time, due either to small queue upstream, or to lack of space downstream

(links close to capacity). We should note that negative pressures are meaningless,

so constraint pz(k) ≥ 0must always hold.

Pressure is calculated for all incoming links z ∈ In ofnodenbyEquation (19). Then,
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the pressure corresponding to every stage j at control cycle kc is defined as the sum

of the pressures of all incoming links that receive right-of-way in stage j, as fol-

lows.

Pn,j(kc) = max

0,
∑
z∈vj

pz(kc)

 , j ∈ Fn (20)

This metric is then used as weight for the distribution of the total available green

time between the competing stages of the intersection.

After pressure values Pn,j are available for every phase j ∈ Fn, the total amount of

effective green timeGn, calculated as

Gn = Cn − Ln =
∑
j∈Fn

g?n,j , n ∈ N (21)

is distributed to the phases of node n in proportion to pressure values. In equation

(21), g?n,j denotes the green time assigned to phase j by fixed-time analysis, using

any of the standard algorithms. It holds that g?n,j ≥ gn,j,min,∀j ∈ Fn. Since phases

are activated in a strictly defined and non-changing order with a guaranteedmin-

imum green time, green duration, g̃n,j(k), is assigned to phases proportionately to

the computed pressures, as follows

g̃n,j(kc) =
Pj(kc)∑

i∈Fn Pi(kc)
Gn, j ∈ Fn (22)

Equation (22) provides the raw green times calculated by MP controller. However,

these values cannot be applieddirectly because itmustfirst beguaranteed that they

complywithasetofnecessary constraints. Therefore, anadditional step is added in

the signal update process, whose objective is to translate MP outputs of Equation

(22) to practically applicable green times Gi,j . This is done by solving online, for

every control cycle kc, the following optimization problem:

minimize
Gn,j

∑
j∈Fn

(
g̃n,j −Gn,j

)2
subject to

∑
j∈Fn

Gn,j + Ln = Cn

Gn,j ≥ gn,j,min, j ∈ Fn∣∣Gn,j −Gp
n,j

∣∣ ≤ gRn,j

Gn,j ∈ Z+

∀j ∈ Fn

(23)

According to the above formulation, the applicable green times for every phase

Gn,j, j ∈ Fn, should be as close to the non-feasible regulator-defined greens g̃n,j
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as possible, while satisfying a set of constraints. The first one is aboutmaintaining

constant cycle duration Cn. The second one ensures that all phases get a prede-

fined minimum green duration gn,j,min. In order to avoid potential instability of

the system due to large changes in the signal timing happening too fast, we im-

pose a threshold to maximum absolute change of green between consecutive cy-

cles in the third constraint, whereGp
n,j denotes the applied green times of the pre-

vious cycle and gRn,j is the maximum allowed change between consecutive cycles.

Finally, feasible green times must belong to the positive integers set. This type of

integer quadratic-programming problem can easily be solved by any commercial

solver fast enough to allow online solution for every control cycle. The solution of

this optimization problem, i.e. variables Gn,j ,∀j ∈ Fn, are the new feasible phase

green for node nwhich will be applied in the next control cycle. The above process

is repeated at the end of the cycle for every controlled intersection, regardless of

what is happening to the rest of the network. The controller only requires real-

time queue information of the adjacent intersections and respective turning ratios

and the algorithm is executed once per cycle.

4.1.2 Critical node selectionmethod

Given the high requirements in monitoring equipment that increase proportion-

ately to the number of controlled intersections, it is interesting to investigate how

the impact of the MP control scheme is affected in the following cases: if only a

fraction of the eligible intersections are controlled; whether some nodes are more

critical than others in the sense of MP control for the same fraction; and what are

the characteristics that would allow us to identify them. In an effort to reply to

these research questions, we develop a node selection methodology based on cur-

rentnetwork trafficcharacteristics, byusingprinciples of trafficengineering com-

bined with an optimization approach. A set of three node assessment criteria is

defined, which we linearly combine into a kind of node (dis)utility function. The

coefficients need to be properly calibrated. Given traffic information of the cur-

rent network situation (e.g. FTC case), a peak-period P is defined, based on the

observed network state, as a set of time steps TP . The selection process can be de-

scribed, step by step, as follows:

• For every node n that is eligible to receive MP controller, the following three

quantities are estimated: The first, denoted as mn
1 , represents the average

node congestion level, as the mean over time of the mean occupancy (queue

normalized over link capacity) of all incoming links z ∈ In of node n, during

peak period P . It is equal to

mn
1 =

1∥∥TP∥∥ 1∥∥In∥∥
∑
i∈TP

∑
z∈In

xz(i)

cz
(24)
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where i is the simulation time-step index, TP is the set of time-step indices

corresponding to the peak periodP and
∥∥TP∥∥ is the size of set TP . The second,

denoted as mn
2 , represents the mean over time of the variance of link occu-

pancy of all incoming links z ∈ In of node n during peak-period P , computed

by

mn
2 =

1∥∥TP∥∥
∑
i∈TP

var
(
Xn

z (i)
)

(25)

where Xn
z (i) =

{
xz(i)/cz|∀z ∈ In

}
is the set of normalized queues of all in-

coming links z of node n at time step i. The third quantity, denoted as Nn
c ,

represents the fraction of the peak period P , during which node n is consid-

ered ‘congested’. In this analysis, we assume that a node is ‘congested’ dur-

ing control cycle k if the average queue of at least one incoming link z ∈ In of

node n during k is higher than a preset threshold percentage p of its storage

capacity, as shown by binary function Cn(k) below.

Cn(k) =

{
1, if 1

tnc

∑ktnc
i=(k−1)tnc+1

xz(i) ≥ p cz, for any z ∈ In

0, else
(26)

Nn
c =

tnc∥∥TP∥∥
∑
∀k∈P

Cn(k), (27)

In Equation (26), tnc denotes the control cycle size in number of simulation

time-steps, i.e. tnc = Cn/t,whereCn denotes thecontrol cycledurationofnode

n and t the simulation time-step duration. In Equation (27), the ratio
∥∥TP∥∥/tnc

is the number of control cycles that constitute peak period P . In other words,

Nn
c represents (in the scale of 0 to 1) the fraction of the peak period P during

which, at least one incoming link is congested and causes queue spill-back.

In the current analysis, we set p = 80%, since this is shown to significantly

increase the probability for spill-back occurrence (see [17]).

• Then, the level of importance of each node n regarding MP control is esti-

mated as a linear combination of the the above variables, denoted as Rn, as

follows:

Rn = αmn
1 + βmn

2 + γNn
c (28)

Quantity Rn is then used as a base to rank nodes and drive the selection of

themost critical ones. The coefficients in Equation (28) act as weights for the

importance of every criterion and their values can be calibrated based on a

trial and evaluation grid test, as described below.
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• Finally, based on a target network penetration rate for MP control (i.e. per-

centageof eligiblenetworknodes to receiveMPcontroller), nodes are selected

in sequence of increasingRn, until the target number is reached.

4.2 Perimeter Control

4.2.1 Proportional-Integral regulator for MFD-based gating

Theconceptofgating inperimeter control strategies formulti-regionsystemscon-

sists of controlling transfer flows in the perimeter or the boundaries of the pro-

tected regions, in order to prevent vehicle accumulation from rising excessively

and leading to congestion phenomena. Flow control can be applied by means of

adaptive traffic signals on the boundaries between regions, where green time of

the controlled approaches is periodically adjusted, based on the actual traffic state

of the region. State information can be provided in real-time by loop detectors

installed properly in the interior of the region, or by other types of traffic mea-

suring equipment. The concept of the Macroscopic Fundamental Diagram (MFD)

enables thedevelopmentof reliable feedback control strategies that assess thenet-

work state based only on measured accumulation, which is associated with travel

production. Driven by the characteristics of the MFD curve, during peak-hours PC

strategiesmanipulate perimeter inflows so that accumulation in high-demand re-

gions remains close to critical - forwhich travel production ismaximum-anddoes

not reach higher values belonging to the congested regime of the MFD if possible.

In this work no traffic states prediction is considered, as we follow a less computa-

tionally expensive approach, where the system is controlled in real-time through

a classical multi-variable Proportional-Integral (PI) feedback regulator (see [18]),

as follows:

u(kc) = u(kc − 1)− KP [n(kc)− n(kc − 1)]− KI [n(kc)− n̂] (29)

In the above, u(kc) denotes the vector of control variables uij for control interval

kc, which represent the average green times corresponding to the controlled ap-

proaches between adjacent regions i and j (heading from i to j), as well as to the

external perimeter approaches of every region (if external gates exist), denoted as

uii; n is the state vector of aggregated regional accumulations ni; n̂ is the vector

of regional accumulation set-points n̂i; and KP , KI are the proportional and in-

tegral gain matrices, respectively. If Equation (29) is written in analytical form

instead of matrix form, a system of equations will be produced. Every equation

specifies the average green time, for the next control interval, for all nodes in spe-

cific direction between pairs of adjacent regions (e.g. uij and uji for adjacent re-

gions i, j ∈ N ), while the last ‖N‖ equations refer to the average green time of

all external approaches of each region. The set-points are decided based on the
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regional MFDs. The number of controlled regions and the respective MFD shapes

depend on the network partitioning to a set of homogeneously congested regions

N , which can involve real or simulated traffic data. In order to be functional, the PI

regulator requires as inputs the real-time regional accumulations, the set-points,

as well as the proportional and integral gainmatrices. Regional accumulations are

supposed to be provided by loop detectors or othermeasuring equipment, properly

distributed in the network. In this work we assume perfect knowledge of regional

accumulations, that are averaged over the control interval.

The PI controller is activated at the end of every control interval and only when

real-time regional accumulations are within specific intervals, in the proximity

of the specified set-point, i.e. activated when ni ≥ ni,start and deactivated when

ni ≤ ni,stop, for i ∈ N and typically ni,stop < ni,start. This is important as early

activation of the PI regulator (i.e. for low accumulation) can lead to signal settings

aiming at increasing congestion in the controlled areas, so that production gets

closer to critical, which is the target. However, such a policy can accelerate con-

gestion and compromise the system performance. From Equation (29), the aver-

age green time uij(kc) of all controlled approaches on the border between regions i

and j with direction from i to j is calculated. Based on this average value, the ex-

act green time for every specific intersection is calculated according to the process

described in the following subsection. After deactivation of the controller, the FTC

signal plan for all PC intersections is gradually restored.

4.2.2 Green time calculation for PC intersections

After average green time uij for all PC controlled approaches between adjacent re-

gions i and j is defined from Equation (29), it is used as base to define the ex-

act new green duration for the respective phases containing the approaches lead-

ing from region i to j. However, since not all intersections serve the same de-

mand, green time assignment is more efficient if decision takes into account cur-

rent queue lengths of the respective approaches. Moreover, new greens are subject

to a set of constraints, similar to the ones imposed in the case of MP signal update

process (see Equation (23)).

Hence, for every uij that is specified by the PI controller, an optimization problem

is solved for determining the exact green duration of the primary and secondary

phases, denoted as p and s, respectively, of all controlled intersections with direc-

tion from i to j. Primary phase p includes approaches with direction from i to j

and secondary phase(s) s include approaches in the vertical (parallel to the bound-

ary between regions) or the opposite direction (from j to i). The sum of available

green of primary and secondary phase remains constant. Assuming that the set of

controlled nodes in the direction from i to j is denoted asMij,m is the node index,

Gm,p is the final green of the primary phase,Gm,s is the final green of the secondary

phase, Gm,t is the sum of available green time for primary and secondary phases,
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Qm,p and Qm,s are the sum of the observed queues of all incoming links belonging

to the primary and secondary phases during the last control cycle, respectively,

and Sm,p and Sm,s denote the sum of saturation flows of all approaches of nodem

belonging to primary phase p and secondary phase s, respectively, the following

optimization problem is formulated:

minimize
Gm,p,Gm,s

θ1

 ∑
m∈Mij

Gm,p − uij‖Mij‖


2

+

θ2
∑

r∈{p,s}

∑
m∈Mij

Qm,r

(
1− Gm,rSm,r

Qm,r + 1

)2

subject to

Gm,p +Gm,s = Gm,t

Gm,r ≥ gm,r,min,∣∣Gm,r −Gpr
m,r

∣∣ ≤ gRm,r

Gm,r ∈ Z+

∀r ∈ {p, s} , ∀m ∈ Mij

(30)

In the above, we seek tominimize the sumof two terms, the importance ofwhich is

weighted by parameters θ1 and θ2, respectively. The first term aims at minimizing

the difference between the finally assigned total green of the primary phase of all

PC intersectionsm ∈ Mij of the approach i− j and the total green indicated by the

controller for the same approach. The second term aims at achieving green time

distribution proportionally to the observed queues of the primary and secondary

phases of the controlled intersections. This is done by minimizing the sum of the

differences between the outflow thatwill be achieved in the primary and secondary

phases of the PC nodes based on the finally assigned green time and the queue that

was observed in the respective phases during the last control cycle.

The constraints of the problem are the following: the first one is about maintain-

ing cycle duration, i.e. ensuring that the sum of primary and secondary phases re-

mains constant; the second one dictates thatminimumgreen gRm,r is assigned to all

phases, where r is an index that indicates the type of phase (primary p or secondary

s); the third one ensures that maximum absolute change between new green Gm,r

andgreenof theprevious control intervalGpr
m,r is below thepreset threshold of gRm,r;

and the forth one dictates that green time intervals are integer. The new control

plans take effect, for every intersection, after the end of their ongoing cycle.
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Figure 14: Detailed structure of the hierarchical control scheme combining
perimeter control and Max Pressure control.

4.3 Max pressure and perimeter control

Adetailed schematicdepictionof theproposed two-layer control framework is shown

in Figure 14. Based on the most recent collection of traffic information during the

last control cycle, (aggregated regional accumulations ni, i ∈ N , where i is the

region index), queues of primary and secondary phases of PC nodes (Qm,p, Qm,s,

∀m ∈ Mij, ∀{i, j} ∈ N with i adjacent to j), and queues of upstream and down-

stream links of MP controlled nodes (xz,∀z ∈ In ∪On, for all n belonging to the set

of MP controlled nodes), the controllers decide on the updated signal plans of the

respective intersections, according to the processes described in the previous sec-

tions. Perimeter control is activated/deactivated under specific conditions (when

regional accumulations are above/below predefined thresholds). When PC is acti-

vated, first a PI controller defines the averagenewgreenof the controllednodes for

every approach i− j between adjacent regions, as well as for the external perime-

ter of each region. Then this average green time is distributed to the specific con-

trolled nodes proportionally to the recorded queues of the primary and secondary

phases, in order to prevent queues from growing excessively and impeding traffic

upstream. In the second layer, Max Pressure calculates the pressure of each phase

of every controlled node, based on the recorded queues upstreamand downstream.

Afterwards, the pressures are translated to new green time for every phase while

satisfying a set of constraints. Finally, new signal settings are applied to all con-

trolled intersections for the next cycle, before the process is repeated.

41 DIT4TraM_D3.1_Passenger_v0.1



4.4 Implementation to a large-scale network via

simulation

The proposed adaptive signal control schemes are evaluated using the urban traf-

fic model described in [19], which was coded from scratch and executed in Matlab

R2020a, while optimization problems 23 and 30 are solved by Gurobi 9.1.2 solver.

Real-life large-scale signalized traffic network of Barcelona city center is used as

case study and Fixed-Time Control (FTC) settings with no adaptive element, are

used as benchmark case. Both MP and PC schemes are applied separately, as well

as in combination, for two different demand scenarios that create moderate and

high levels of congestion in the FTC case, respectively. All MP cases are tested in

full-network implementation and in node subsets for different penetration rates,

selected by the proposed algorithm as well as randomly, for comparison. Detailed

descriptionof thenetwork, the simulation settings and theperformedexperiments

are provided in this section.

(a) (b)

𝒖𝟏𝟏

𝒖𝟐𝟐

𝒖𝟑𝟑

𝒖𝟐𝟏

𝒖𝟏𝟐
𝒖𝟐𝟑

𝒖𝟑𝟐

(c)

Figure 15: (a) Map of the studied network of Barcelona city center; (b) Model of
Barcelona network clustered to 3 homogeneous regions, with annotation of nodes
used for PC; (c) schematic representation of controlled approaches for perimeter
and boundary flow control, with green time per approach as control variable.
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4.4.1 Case study

The traffic network utilized in this study is a replica of Barcelona city center, in

Spain, as shown in Figure 15a. It consists of 1570 links and 933 nodes, out of which

565represent signalized intersectionswithfixed-lengthsignal control cycles rang-

ing from 90 to 100 sec. Links have from 2 to 5 lanes. All control schemes are tested

in two different demand scenarios, one leading to moderate and one to high con-

gestion in FTC settings. For the purpose of PC implementation, the network is par-

titioned into three regions of similar traffic distribution, according to the cluster-

ingmethod described in [20]. The resulting regions are displayed in different col-

ors in Figure 15b. In the same figure, the controlled intersections used for gating

through PC are displayed. Figure 15c schematically represents the perimeter and

boundary flow control variables uij, which denote the average green time of all ap-

proaches in the direction from i to j, while uii denotes the equivalent time for all

external approaches of region i. All nodes on the external perimeter of all three

regions are controlled. This partitioning leads to 4 state and 7 control variables,

which are also depicted in Figure 15c.

Thedynamicprofile of total generateddemand, for bothdemandscenarios, consist

of a 15-minute warm-up period followed by a 2-hour constant peak demand, for

a total simulation period of 6 hours, which is representative of the morning-peak.

Medium demand includes 251k trips generating at 88 origin links and heading to-

wards 104 destination links, whereas high demand scenario includes 316k trips,

from123origins to 130destinations. Figure 16graphically describes the spatial dis-

(a) (b) (c)

(d) (e) (f)

Figure 16: Description of the two demand scenarios in peak period: medium (a)-
(c) and high (d)-(f). (a) and (d): aggregated trip distribution between regions;
(b) and (e): trip origin density; (c) and (f): trip destination density.
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tribution of demand for both scenarios: (a) to (c) refer to medium demand while

(d) to (f) refer to high demand. The distribution of trips between regions, resulting

from suitable clustering process as described below, is presented in the first graph

of each row (a and d). Each bar corresponds to the total demand originating from

each origin region, each represented by different color, while horizontal axis indi-

cates destination region. Second graph of each row (b and c) presents the spatial

distribution and density of origin points, represented by dots on the networkmap.

Dot color indicates demand volume per origin point, as described by the respective

colorbar. Similarly, third graph of each row (c and f) represents the same infor-

mation for destination points. Apart from difference in total number of trips, the

two demand scenarios lead to different traffic patterns, since high demand sce-

nario has a clear directional profile, with tripsmainly originating from the periph-

ery (regions 1 and 3) and heading towards the center (region 2), whereas medium

demand shows more diverse trip distribution between regions, with more intra-

regional trips in all regions, plus a less intense directional pattern towards the city

center (region 2). The objective of using different demand scenarios is to test the

efficiency of the proposed control schemes under different traffic conditions. It

should be noted, that no demand information is required by the controllers, which

only receive real-time queue measurements and/or turn ratios as inputs.

4.5 Control scenarios

The case offixed-time, static signal control, labeled as ’FTC’, is used as benchmark

forall testedcontrol schemes. Firstly,MP is evaluatedas single control strategy (no

PC applied simultaneously). With the aim of investigating the performance of MP

in relation to thenumber and locationof the controllednodes,we test the following

scenarios:

• MP control of all eligible network nodes. All signalized nodes receiveMP con-

troller.

• MP control of fraction of network nodes, selected randomly. For each pen-

etration rate of 5%, 10%, 15%, 20%, 25%, 10 randomly created MP node sets

are evaluated through simulation.

• MP control of fraction of network nodes, selected by the proposed algorithm.

For the samepenetration rates as above,MPnode sets are createdaccording to

decreasing values of R, after suitable parameter calibration. FTC simulation

results are used for calculating variablesmn
1 ,m

n
2 andN

n
c , and thus quantityR.

Afterwards, MFD-based PC based on the PI controller, is applied first as a single

control scheme and then in combination with distributed MP control, integrated

in the two-layer framework. Similar to the case of single MP, the MP layer of the

combined scheme is tested for several controlled node layouts, in various penetra-
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tion rates, as well as in full network implementation (100 % eligible nodes). The

following scenarios are evaluated:

• Single PC for 3-region system

• PC for3-regionsystemcombinedwithMPcontrol toall eligiblenetworknodes

• PC for 3-region system combinedwithMP control to fractions of eligible net-

work nodes, selected randomly. For each penetration rate of 5%, 10%, 15%,

20%, 25%, 10 sets of randomly selected eligible nodes are formed (same as in

single MP scenarios). MP control is evaluated in parallel with PC scheme.

• PC for 3-region system combinedwithMP control to fractions of eligible net-

work nodes, selected by the proposed algorithm. For the same penetration

rates as above, MP node sets are created according to decreasing values of R,

after suitable parameter calibration. FTC simulation results are used for cal-

culating variablesmn
1 ,m

n
2 andNn

c , and thus quantityR.

4.6 Experiment settings

The control scenarios under evaluation are simulated for a 6-hour time period for

medium demand, and for a 8-hour period for high demand, representative of typ-

ical morning peak. The time window for turn ratio update is 15 minutes. MP reg-

ulator is active for all controlled intersections during the entire simulation time

and signal plans are updated at the end of every cycle. Only phases lasting longer

than 7 seconds in the pre-timed scheduling are eligible for change by the regulator

and minimum green time allowed per phase gn,j,min is also 7 seconds. Maximum

allowed fluctuation of green time between consecutive cycles, gRn,j is set to 5 sec-

onds, to avoid instabilities. Inputs for MP regulator are link queues of incoming

and outgoing links, aswell as estimated turn ratios for all approaches of controlled

nodes.

Regarding PC implementation and based on the network partitioning in 3 regions

described above, the PI controller of Equation (29) regulates 7 control variables

uij, which represent the average green time of all controlled intersections in the

approaches between adjacent regions 1-2, 3-2, 2-1, 3-1, as well as those of the ex-

ternal perimeter of each regions 1, 2 and 3 (see Figure 15c), using 3 state variables,

i.e. the regional accumulations ni, i = 1, 2, 3. Therefore, u is a 7x1 vector, n and n̂

are 3x1 vectors, while proportional and internal gainmatricesKP andKI are of di-

mensions 7x3. Four first rows refer to boundary approaches in the order they are

listed above and three last rows refer to external perimeter approaches of regions 1

to 3. Due to different directional patterns of the two demand scenarios, PI param-

eters differ slightly. For the medium demand scenario, setpoint accumulation for

the three regions are n̂1 = 10000, n̂2 = 12000, n̂3 = 6800 veh, proportional gain ma-
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trix isKP = [15,−10, 0; 0,−5, 10;−15, 10, 0; 0, 5,−10;−20, 0, 0; 0,−20, 0; 0, 0,−20] and

integral gainmatrix is KI = KP × 10, ni,start = n̂i, ni,stop = 0.85 n̂i, for every region

i = 1, 2, 3. For the high demand scenario, accumulation setpoint is n̂1 = 4500, n̂2 =

9200, n̂3 = 8000 veh, proportional gain matrix is KP = [18.5,−2.1, 0; 0,−3.3, 6.8;

−13.3, 5.6, 0; 0, 4.6,−3.5;−16.4, 0, 0; 0,−9.8, 0; 0, 0,−10.5] and integral gain matrix is

KI = [18,−69, 0; 0,−69, 62;−44, 24, 0; 0, 1,−40;−54, 0, 0; 0,−30, 0; 0, 0,−51], ni,start =

0.99 n̂i and ni,stop = 0.93 n̂i, for every region i = 1, 2, 3. In all cases, activation of the

PI controller happens when at ni ≥ ni,start for at least 2 regions i = 1, 2, 3, while

deactivation happens when ni < ni,stop for all 3 regions. PC application requires

inputs of aggregated regional accumulations ni for all regions i = 1, 2, 3 for the PI

controller, while for the phase of applicable green time calculation (optimization

problem 30), queue measurements for all approaches of primary and secondary

phases of PC intersections,Qm,p andQm,s respectively, are required, together with

the latest applied signal plan. After performing grid search optimization, we found

that the best performing values are θ1 = 0.4 and θ2 = 0.9, whichweused in all cases.

The process is repeated every 90 seconds.

4.7 Results

4.7.1 Single Max Pressure

Results of simulation experiments concerning single Max Pressure schemes are

presented in this section. The case of full-network MP implementation is com-

pared to the FTC case and to different scenarios of partial MP implementation, in

different fractions of network nodes, selected both randomly and by the proposed

methodology. For the process of node selection, the considered peak-period is 2-

hour long and consists of TP = 80 control cycles of 90 seconds. FTC case is sim-

ulated and results are used for the calculation ofm1,m2 and Nc. After performing

a trial-evaluation grid search for themedium demand scenario, the best perform-

ing values are α = 0.6, β = −1.8 and γ = −1, and selection is done starting from

nodes with lowestR. In this way, the algorithm prioritizes selection of nodes with

relatively high queue length variance and spill-back occurrence during peak time

but withmoderatemean queue lengths. In Figure 17 the node selection process for

the case of medium demand is pictured for penetration rates 5%, 10% and 15%,

where dots represent all network signalized nodes. First column graphs (a, d, and

g) show the relation betweenm1 andm2, while second column graphs (b, e and h)

show the relation betweenNc andm2, all calculated based on simulation results of

FTC case. Blue dots represent nodes that are selected to receive MP controller ac-

cording to the proposed algorithm. Third column graphs (c, f and i) visualize the

spatial distribution of the selected MP nodes, depicted as red dots.

The performance of single MP network control for the medium demand scenario,
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Figure 17: Visualization of the MP node selection process for the case of medium
demand, according to the proposed method. Each row refers to different pen-
etration rate (5%, 10% and 15%, from top to bottom). First and second column
graphs show relations between selection variablesm2 -m1 andm2 - Nc, respec-
tively, for all network nodes, for the benchmark case of FTC. Blue dots represent
the selected nodes for MP control. Third column figures show the plan of the stud-
ied network, partitioned in 3 regions, with the spatial distribution of the selected
MP intersections shown as red dots.

for different fractions of MP controlled nodes, as well as for the standard full net-

work implementation (penetration rate of 100%), is shown in Figure 18. On the

vertical axis the percentile improvement of total travel time (vehicle-hours trav-

eled or VHT) with respect to FTC scenario is shown. Each boxplot refers to 10 cases

of random selection of MP controlled intersections, corresponding to the respec-

tive penetration rate. The case of 100%rate refers to fullMPnetwork implementa-

tion. Red triangles represent scenarioswhere controllednodesare selectedaccord-

ing to themethod described in section 4.1.2. Firstly, we observe that for the case of

medium demand, almost all MP scenarios lead to improved total travel time, even

those with randomly selected MP nodes. However, most cases of node selection

made by the proposed method significantly outperform random assignment. In
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Figure 18: Comparison of Total Travel Time improvement, with respect to FTC sce-
nario, of single Max Pressure application, for medium demand scenario. Boxplots
refer to 10 randomly created MP node sets for every penetration rate, red triangles
refer to node selection based on the proposedmethod and yellow dot represents
the full-network implementation.

fact, we notice that the higher the number of controlled nodes, the larger the dif-

ference between random and targeted selection performance. These observations

indicate that the proposed selection process is successful in identifying critical in-

tersections for MP control. Interestingly, the case of installing MP regulator to all

network nodes leads to smaller improvement than those including only a fraction

of controlled nodes according to the proposed algorithm. More specifically, with

only 10% of critical nodes the system travel time improves by 14.5% and with 25%

of critical nodes, it improves by 18.8%, while in the case of controlling all nodes,

it improves only by 10.6%. This remark indicates not only significant cost reduc-

tion can be achieved by reducing the number of controlled nodes through the pro-

posed selection process, but also system performance can be increased. However,

this behavior is observed for moderate demand, where the network does not reach

highly congested states in the FTC case.

A different behavior is observed in the case of high travel demand, both in the node

selection pattern and in the corresponding network performance. Firstly, we ob-

served that using the same values for parameters α, β, γ as in moderate demand

case and following the same selection pattern leads to poor system performance,

very similar to the one of random selection. Therefore, parameter optimization is

done again, by performing a new trial-evaluation test, specifically for the high de-

mand scenario. The new values found are α = −0.72, β = −0.4, γ = −0.2. In this

case, we observe a change of sign in α, which directs the selection towards nodes
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Figure 19: Comparison of Total Travel Time improvement, with respect to FTC sce-
nario, for single Max Pressure application for high demand scenario. Boxplots re-
fer to 10 randomly created MP node sets for every penetration rate, red triangles
refer to node selection based on the proposedmethod and yellow dot represents
the full-network implementation.

with high mean queues (m1) while high queue variance (m2) and spill-back du-

ration (Nv) are given lower weights. In other words, in this case, the best found

selection pattern prioritizes nodes with highmean queues.

Regarding systemperformanceof singleMP inhighdemandscenario, results show

relatively smaller improvementwith respect to FTC than in the case ofmediumde-

mand. This can be seen in Figure 19, Again, boxplots refer to 10 cases of randomly

selected node sets forMP control per penetration rate. Firstly, it is interesting that

the case of full-networkMP control (yellow dot) leads to practically zero improve-

ment compared to FTC. However, smaller MP penetration rates in best case result

in improvement between 3% and 7%. The effectiveness of node selection method

seems to drop, evenwith re-optimized parameters of functionR, since we observe

a few random sets performing better than the ones of the proposed method. Per-

formance of targeted selection is always better than the median of the random set

though, and in the case of 15%, for which parameter optimization was performed,

performance is significantly better than random cases. Based on these remarks,

we can infer that partial MP implementation, except for being less costly, can also

lead to improved performance, especially in highly congestednetworkswith single

MPcontrol,which implies that significant spatial correlationexist betweenperfor-

mance of MP controlled nodes that can act detrimentally to system performance.
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Figure 20: Comparison of Total Travel Time improvement, with respect to FTC sce-
nario, for single PC and combined PC plus MP implementation, for (a) medium,
and (b) high demand. Graphs show the performance for different MP node pen-
etration rates (0% is single PC) for the two-layer PC+MP framework. Boxplots refer
to 10 random MP node selections per rate while yellow triangles refer to node se-
lection based on the proposed method.

4.7.2 Two-layer framework: Perimetercontrol combinedwith

Max Pressure

Results of the two-layer framework combining PC withMP schemes are discussed

in this section. Simulation results in terms of performance improvement with re-

spect toFTCcase are shown inFigure20,where (a) refers tomediumand (b) tohigh

demand. The case of 0%penetration rate (square) corresponds to typical PC appli-

cationwithout anyMPcontrol (for comparison), while the remaining cases refer to

combined control of PCandMP indifferentnodepenetration rates. Again, boxplots

aggregate results of 10 scenariosof randomMPnodeselectionof the corresponding

penetration rate, combined with the same PC scheme. Triangle annotation refers

to the combined scheme where MP nodes are selected according to the proposed

methodology, while the case of 100% (dot) refers to the combined schemewithMP

installed in all nodes. Selection of MP nodes is based on FTC results and is done

with the same parameter values α, β, γ as in single MP, for every demand scenario

respectively, while PI controller parameters are the same for all cases of the same

demand scenario.

For medium demand, we observe that single PC does not lead to considerable im-

provement with respect to FTC (only 0.5%). This is not surprising, since there is

not enough demand to drive the network to heavily congested states, where PC

would get activated for longer and would have a higher impact, and production

MFD does not drop significantly for FTC case, as we will see also in figure 21 be-

low. However, in all combined scheme cases, we observe significant travel time

improvement with respect to the FTC case. Especially in the cases of 5% and 20%
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Table 3: Total travel time for all control scenarios, for medium and high demand,
in vehicle hours traveled (VHT). Under ∆VHT, the percentile change of VHT with
respect to FTC case is shown. For random MP node selection, the median VHT of
10 random node set replications is reported.

Medium demand High demand

MP node selection Targeted Random Targeted Random

Control scenario VHT ∆VHT(%) VHT ∆VHT(%) VHT ∆VHT(%) VHT ∆VHT(%)
FTC 221400 - - - 484000 - - -
MP 5% 195580 -11.7 212743 -3.9 464390 -4.1 472394 -2.4
MP 10% 189250 -14.5 207173 -6.4 471680 -2.5 479732 -0.9
MP 15% 187860 -15.1 204558 -7.6 447360 -7.6 476813 -1.5
MP 20% 185940 -16.0 207777 -6.2 465280 -3.9 476145 -1.6
MP 25% 179850 -18.8 209726 -5.3 467480 -3.4 480113 -0.8
MP 100% 197960 -10.6 - - 483000 -0.2 - -
PC 220380 -0.5 - - 447000 -7.6 - -
PC +MP 5% 183000 -17.3 214725 -3.0 438540 -9.4 445948 -7.9
PC +MP 10% 190070 -14.2 212544 -4.0 441060 -8.9 451741 -6.7
PC +MP 15% 196190 -11.4 204242 -7.8 422550 -12.7 442860 -8.5
PC +MP 20% 182230 -17.7 205216 -7.3 411510 -15.0 440004 -9.1
PC +MP 25% 184650 -16.6 207452 -6.3 408430 -15.6 441069 -8.9
PC +MP 100% 183220 -17.2 - - 405300 -16.3 - -

MPnodes selectedby theproposedmethod, performance is slightlyhigher than the

best performing single MP scheme of the respective penetration rate. Moreover,

similar to the single MP cases, we observe that the proposed node selection algo-

rithm leads to higher performance gains compared to random selection for most

cases. The highest improvement for the two-layer controller, which is about 17.7%

, is recorded for the case of 20% MP nodes, while both 100% and 5% penetration

rates achieve about 17.2%. Therefore, in multiple cases, as in 5%, 20% and 100%,

addingPCon topofMP increasesnetworkperformance from3%to7%with respect

to single MP.

For high demand, results of the combined scheme aremore promising than single

MP, as we can see in Figure 20(b). While single MP application, as well as single

PC, only improve traffic performance by around 8% compared to FTC in the best

case, the two-layer framework manages to improve up to 15%, in the case of 25%

MP nodes selected by the proposed algorithm, and up to 17% in the case of full-

networkMP implementation. Therefore, in high demand scenario, PC strategy can

be significantly enhanced by the additional distributed MP layer, even with only

a fraction of properly selected, controlled MP nodes, which leads to performance

very similar to the one of 100% controlled nodes, but with only 25% of the respec-

tive cost. Detailed performance of all evaluated controlled schemes can be found in

Table 3.

Figure 21 depicts simulation results of the benchmark case of FTC, single MP case

for all eligible nodes (‘MP 100%’), single MP controlling 20% of nodes selected

according to the proposed method (‘MP 20%’), and the combined PC with MP to

20%of selected nodes (‘PC+MP20%’), all for the case ofmediumdemand. In 21(a)
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Figure 21: Simulation results for medium demand scenario. Comparison between
FTC, MP to all network nodes (100%), MP to only 20% nodes selected by the pro-
posed method, and combined PC with MP to 20% selected nodes. Figures refer
to the entire network: (a) MFD of accumulation vs. production; (b) time-series of
accumulation; (c) time-series of total virtual queue; (d) time-series of cumula-
tive trip endings.

MFDs of accumulation versus production are shown for the four cases. We notice

that all scenarios involving MP significantly increase the maximum production,

compared to the FTC case, and therefore, increase both critical andmaximum ob-

served vehicle accumulation. This remark indicates that MP strategy can increase

system serving capacity in conditions of moderate congestion, and by balancing

queues around controlled nodes, it leads to better road space utilization. As a re-

sult it allows a higher number of vehicles to be in the system at the same time,

which was not possible in FTC due to local gridlocks that were forcing excess de-

mand to stay in virtual queues. This is evident in (b), where total network accu-

mulation of all scenarios is higher than in FTC, as well as in (c), where total vir-

tual queues are remarkably lower. Moreover, by comparing ‘MP 20%’ and ‘PC+MP

20%’MFD curves in (a), we see that the latter leads to slightly lowermaximumac-

cumulation and, thus, smaller capacity drop and hysteresis loop in the unloading

part. In this case, combined PC+MP performs slightly better than MP by approx-
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imately 2%. However, the opposite is observed in the respective cases of 25%MP

nodes, which is probably due to traffic correlation among additionalMP controlled

nodes. We should note here that some change of MFD curve in presence of MP is

to be expected, especially with respect to critical accumulation, and this should be

considered in the process of parameter tuning for PC. Another interesting remark

is that, between the two singleMP scenarios, ‘MP 100%’ results in higher increase

in system serving capacity, but on the other side, it introducesmore vehicles in the

network and thus, reaches higher congestion levels and capacity drop in peak time

than FTC. Or, production rises significantly, but also drops during peak, causing

some delays and heterogeneity non-existent in FTC, as shown by the unloading

part of the MFD curves. This effect can explain why MP installed in all nodes per-

forms worse than partial installation to 20% of nodes, and is closely related to the

shape of MFD and how fast production drops when network enters the congested

regime. However, in this case, minimum recorded production is not much lower

than the one in FTC, while capacity increase is significant, thus, despite the im-

portance of the production drop in MP 100% case, VHT savings compared to FTC

are still significant. This effect is less intense in the ‘MP 20%’ and ‘PC+MP 20%’,

where a slightly lowermaximumproduction is recorded, but lowermaximumcon-

gestion and capacity drop are observed as well. For medium demand, the highest

delay savings are achieved for the case of PC +MP 25%.

Similarly, figure 22 shows simulation results of four, best-performing control sce-

narios, for thehighdemand scenario. FTC case is compared to the case of singleMP

with full-network control (‘MP 100%’), the case of single PC, and the case of com-

bined PC with distributed MP in subset of 25% of eligible nodes, selected accord-

ing to the proposed method. Regarding single MP scheme, a behavior similar to

medium demand case is also observed for the high demand, although in the latter,

capacity increase is relatively smaller compared to FTC (about 6.5%), while pro-

duction drop in peak time is significantly higher (around 27%),which can be due to

reachingmore congested state by allowingmore vehicles inside the network at the

same time, as we can see in 22b. Overall, MP 100% case performs almost similar to

FTC in terms of VHT but significant differences are observed betweenMFD curves.

However, smaller hysteresis is recorder during network unloading in the case of

MP 100%, thus reducing the damage made by the production drop. Interestingly

this effect is eliminated in the case of the two-layer framework, where PC plays an

important role in prohibiting the system from reaching highly congested states.

Therefore, in the combined case of ‘PC + MP 25%’, the network reaches slightly

higher production in peak period compared to single PC case, which drops with a

smaller rate as accumulation increases above critical, due to MP control. Also, PC

impedes the excessive increase of vehicle accumulation in the system and prevents

highly hysteretic behavior due to heterogeneity. Among the four cases shown, the

combined framework leads to shorter total travel time, reducedby almost 15%with

respect to FTC,when singlePCachieves adecrease of around7.5%. In short, adding
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Figure 22: Simulation results for high demand scenario. Comparison between
FTC, single PC, single MP in 100% of nodes and combined PC with MP in 25% of
nodes selected by the proposed method. Figures refer to the entire network: (a)
MFD of accumulation vs. production; (b) time-series of accumulation; (c) time-
series of total virtual queue; (d) time-series of cumulative trip endings

a MP layer significantly improves single PC performance, while properly selected

MP nodes allow for a smaller network penetration rate that leads to comparable

performance as in full-network MP implementation.

4.8 Findings

This section refers to traffic-responsive signal control forurbannetworksandpro-

poses a two-layerhierarchical control framework,which combinesperimeter con-

trol, implemented after partitioning of the network in homogeneously congested

regions, and distributed Max Pressure control, implemented to isolated network

intersections. The key points of this research are the following:

• Combined implementation of multi-region PC with distributed MP in a two-

layerhierarchical control framework isproposed for large-scalenetworkcon-
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trol.

• Partial implementation of MP control in subsets of network nodes is tested.

• Analgorithmtohelp identify criticalnodes forMPcontrol according toqueue-

related metrics around the node (mean, variance and spill-backs of queues

during peak hour) is developed and tested.

• Several control layouts for MP involving different penetration rates of con-

trolled nodes, the selection ofwhichwas both targeted and random (for com-

parison) are tested by an enhanced version of link-based dynamic macro-

scopic SaFmodel, which integrates traffic signals, queue capacities and spill-

backs.

More specifically, the proposed node selection method proves effective in identi-

fying critical node sets for MP control, since it outperforms random selection for

all network penetration rates in themedium demand scenario. Even though its ef-

fectiveness seems to drop in the high demand scenario for the single MP scheme,

it remains effective in all combined schemes of PC and MP. The proposed selec-

tion variables (m1,m2 andNc) seem to play an important role as indicators of node

importance with respect toMP, while further research can help unravel themech-

anism that relates selection variable importance to demand patterns, and thus de-

termine optimal parameter values in a universal way by dropping parameter opti-

mization requirement. Overall, it seems that significant correlation exists between

controlled nodes, which affect each other in away not necessarily beneficial for the

system, since performance gains can decrease for penetration rates above 25%and

can even drop to zero in 100% in highly congested scenarios. This phenomenon

highlights the importance of partial MP implementation, especially in increased

congestion, and the role of spatial distribution of the controlled nodes, which the

proposed selection method tries to unravel.

Regarding the two-layer combinedschemeofPCandpartialMP, results arepromis-

ing inmost tested cases, especially in the high demand scenario, where in our case

study, adding MP in only 25% of properly selected network nodes leads to dou-

bling the performance gains of single PC compared to FTC case, from 7.5% tomore

than 15%. Moreover, almost the same performance gain is achieved in the case of

full-network MP implementation, proving the proposed selection method effec-

tive and, as a result, reducing implementation cost to one fourth, compared to full-

network scheme. Furthermore, PC protects high-demand regions from reaching

saturated states, and therefore from capacity drop, which seems to also increase

MP efficiency, given that single MP shows zero improvement for full network im-

plementation in high demand scenario, while combinedMPwith PC achieves twice

the gain of single PC.
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5 Multi-modal control

Public transport is a vital component of modern society and plays a crucial role by

providing a convenient and affordable mode of transportation. It helps in reduc-

ing traffic congestion and air pollution in cities, promoting sustainable living, and

improvingmobility. Although a lot of effort has been placed on the design problem

by transportation engineers over the years, the smooth and reliable operation of

public transport is a great challenge especially in congested urban road networks.

Thus, transit prioritisation and control schemes are of utmost importance and in

many cases essential in order to ensure the reliability and smooth operation of

public transport. Such schemes are usually focused on reducing bus travel time

between stops through prioritising buses over vehicles [21]–[23]. However, this is

often done at the expense of the overall passenger throughput of intersections and

corridors. These approaches are effective only if supported by major modal shifts

towards public transport. When that is not the case, these strategies can deterio-

rate the performance of the vehicular traffic and reduce the overall level of service

of the infrastructure [24], [25].

5.1 AI assisted Dynamic Bus Lane Control in Con-

nected Urban Environments

5.1.1 Introduction

The advent of the connected era and by extension the advent of connected vehicles

create new opportunities in terms of transit prioritisation strategies, as accurate

information can be extracted on bus delays and traffic network conditions. More-

over, through advanced communication protocols (V2X) connected vehicles can be

instructed to alter their behaviour (e.g. lane change) in a desired manner.

In this section, two learnable, highly scalable and transferable bus prioritisation

strategies are developed byNTUA, using reinforcement learningunder a connected

environment in urban corridors whose aim is to enhance the reliability and ef-

ficiency of bus operation. The first strategy is called “Intermittent Dynamic Bus

Lanes” (IDBL) and extends in a dynamic and adaptive manner the concept of Dy-

namic Bus Lanes as proposed by [25], [26]. The second strategy, inspired by [27],

is called “Adaptive Bus Lane Density Control” (BLDC). It is essentially a control

strategy that refines the design of dynamic bus lanes, compared to the first one, by

trying to balance between efficient bus operation and unaffected accommodation

of vehicleflowsby implementing amechanism for controlling the bus lane density.

Inbothcases, it is assumed that thedemand forpublic transport at anygiven time is

reflected on the bus line frequencies given by the operator’s timetables and, there-
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Figure 23: Lane evacuation strategy on a typical corridor. The dynamic bus lane
segment is shown in red colour.

fore, themain focus is onmaking busesmore punctual and reliable in the least in-

vasive way rather than alwaysmaking buses faster assuming greater public trans-

port demand. This approach can be beneficial in facilitating gradual modal shifts

and gives a more flexible foundation for applying modal shift policies.

5.1.2 Intermittent Dynamic Bus Lanes

Problem setup

In the first proposed bus prioritisation strategy, called ”Intermittent Dynamic Bus

Lane” (IDBL), buses are agents that are able to control the activation or deactiva-

tion of bus lanes in the front area of the bus in order to mitigate transit delays. At

each bus stop, the agent essentially decides whether the downstream lane portion

of a given clearing distance (various values are tested) should be vacated by all ve-

hicles following an efficient evacuation strategy based on the reported deviation

from the bus schedule and the observed traffic conditions until the next bus stop.

The IDBL strategy can be described in detail as follows. When a bus-agent arrives

at a bus stop, he observes the arrival delay (or early arrival) at the current bus stop

and information about theprevailing trafficconditions in the corridor segment be-

tween the current bus stop and the next bus stop. Based on this observation, the

bus-agent decides if the bus lane will be activated or not. If the agent decides to

activate the bus lane, a process similar to that of 2.2.1 is being followed. All rele-

vant vehicles are informed continuously that the bus lane has been activated to en-

sure that vehicles in the adjacent lanes will not enter the activated bus lane within

the given clearing distance. This ensures that vehicles in the adjacent lanes will

not enter the activated bus lane within the given clearing distance. Vehicles within

the dynamic lane segment check their adjacent lane for neighbouring vehicles. If a

gap of sufficient length between the leading and following vehicles is observed in

the adjacent lane, they get instructed to change lane and exit the activated bus lane

(for example thegreenvehicles of Figure 23). Otherwise, vehicles continue straight

until a sufficient gap is found.
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It should be noted that drivers are assumed to be fully compliant to the given in-

structions. This means that drivers outside the activated bus lane will never enter

and drivers inside the bus lane will always seek to change lanes when requested,

but conduct a lane change onlywhen conditions are suitable for a safe lane change,

i.e. they operate as they would normally do. Right turning vehicles within a spec-

ified distance (80 metres) from their relevant junction are excluded from the lane

changing instruction (Figure 24). Moreover, if the lane area upstream of the bus-

agent isnot activatedasabus lanebyanother followingbus, all vehicles are allowed

to enter behind the bus.

Figure 24: Configuration of Intermittent Dynamic Bus Lane (red stripe). Right turn-
ing vehicles are allowed always on the denoted section within the dynamic lane
segment.

Finally, when the dynamic bus lane is deactivated, vehicles in the adjacent lanes

and vehicles on the (possibly) previously activated bus lane are informed that they

are allowed again to enter or stay on the bus lane, respectively, and no other re-

strictions take place.

A Deep Reinforcement Learning Bus Lane Controller

Asmentioned, in the proposed approach a bus-agent is considered tomove along a

corridor with multiple bus stops. A learnable controller is developed to activate or

deactivate the dynamic bus lane whenever the bus reaches a bus stop based on the

existing traffic conditions and the reported deviation from a predefined timetable.

For the control problem, the principles of Deep Reinforcement Learning are lever-

aged. Morespecifically, aProximalPolicyOptimizationalgorithm(PPO) [5] is trained

to control the activation or deactivation of the dynamic bus lane everytime a bus

reaches a bus stop. Proximal Policy Optimization is a state-of-the-art on-policy

model-free reinforcement learning algorithm that belongs in the policy-gradient

methods. It aims to find a balance between exploration and exploitation in order to

improve the training stability by updating the policy in a local, proximal manner,

avoiding “too severe” policy updates.

The structural components of the agent, namely the state, action and reward, are
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definedas follows: Thebus-agentobserves a state s everytime it reaches abus stop.

The state s is defined by a vector comprising of the instantaneous lane occupancy

(the total length of vehicles including minimum gap distance on a lane segment

dividedby the segment’s length)downstreamof thebus stopuntil thenextbus stop

obl, the instantaneous lane occupancy of the corresponding adjacent lane segment

oadj, themean travel speed (5min aggregation period) of vehicles on the same lane

segment speedbl , the mean travel speed (5min aggregation period) of vehicles on

the corresponding adjacent lane segment speedadj, the arrival delay on the current

bus stop of the bus delaybs and the previously taken action aprev. Additionally, for

each traffic signal (2 in total) between the current and the next bus stop the agent

also observes regarding traffic signal’s upstream rightmost lane, the number of

waiting vehicles n
tli
bl , i = 1, 2, the total waiting time of vehiclesW

tli
bl i = 1, 2, and the

instantaneous lane occupancy o
tli
bl , i = 1, 2. The same values are computed for all

corresponding adjacent lanes, i.e., the number of waiting vehicles n
tli
adj , i = 1, 2, the

total waiting time of vehiclesW
tli
adj , i = 1, 2, and the instantaneous lane occupancy

o
tli
adj , i = 1, 2.

When the bus-agent reaches a bus stop based on the observed state s , it takes on

a binary action a ∈ {0, 1}. If a = 0 the dynamic bus lane is activated, otherwise

(a = 1) is deactivated.

The reward is the key component that drives the agent into learninghow to take the

optimal action since the agent seeks to obtain a policy that maximises the sum of

future (discounted) rewards. The goal of the bus-agent is tominimise the bus stop

arrival time deviation from a given timetable. To that end, the reward r is defined

as:

r = −|tar − ts| (31)

where tar is the arrival time at the next bus stop that the agent experienced, ts is

the scheduled arrival time at the next bus stop given by the predefined timetable.

5.1.3 Adaptive Bus Lane Density control

Adaptive Bus Lane Density Control (BLDC) strategy follows the same general ra-

tionale as IDBL but with three key differences (Figure 25). First, the bus-agent has

control over the number of vehicles allowed within the dynamic bus lane. Instead

of simply allowing or banning all vehicles, the agent is more flexible and is able to

adjust the bus lane density to find the optimal balance between ensuring reliable

transit schedules and accommodating vehicular flows. Second, the agent decides

andactswhen reachinga certaindistance (100metres) fromthebus stop. Thispro-

vides the agent with crucial additional time to regulate the density of the dynamic
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Figure 25: BLDC’s configuration

lane segment starting in front of the upcoming bus stop. Third, the length of the

bus lane changes dynamically with its initial length being equal to the distance be-

tween two consecutive bus stops. This means that as the bus passes one bus stop

towards the next one, the bus lane length is limited from the position of the bus on

the bus lane until the next bus stop. Similar to IDBL, vehicles are allowed to enter

the upstream lane of the bus if it is not activated by another following bus. Based

on the above configuration the BLDCmethod may lead - at least conceptually - to

a more precise and stable control of the selected density.

The problem of which vehicles will be instructed to exit the bus lane arises, since

BLDC doesn’t evacuate all vehicles in the dynamic bus lane segment. Moreover, it

is crucial for the effectiveness of the strategy that the density of the bus lane sta-

bilises to the desired one as soon as possible. It is therefore important that the

instruction to exit is given to vehicles for which the possibility of successful lane

change is maximised. The same holds for vehicles on the adjacent lane that will

be informed that are allowed to enter the bus lane when the prevailing density is

less to the one decided by the bus agent. Finally, it would be also desirable that the

instructed to exit vehicles as well as the informed ones that are allowed to enter

will be those that cause the least possible disturbance to the rest of the traffic. To

that end, a hierarchy of vehicles in terms of the lane change ease was created using

the lane change priority plc score based on Time-To-Collision (TTC) metric [28]

defined as follows:

plc = TTCf + TTCl (32)

Where TTCf is the longitudinal TTC of the vehicle with the closest following ve-

hicle in its relevant adjacent lane, TTCl is the longitudinal TTC of the vehicle with

the closest leading vehicle in its relevant adjacent lane.

The bus lane density is monitored every 1 second. Depending on whether the ob-
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served density is less or greater than the one decided by the bus-agent, the BLDC

method makes use of the TTC-based score and gives exit-instructions or enter-

notifications, respectively, in descending order (Figure 26 and 27).

Figure 26: Example of a BLDC’s exit-instruction strategy for 3 exiting vehicles. In
green are shown the vehicles with the highest priority score that receive an exit-
instruction. Vehicles with lower priority scores are shown in red. Yellow areas
illustrate the space dimension of the priority score.

Figure 27: BLDC’s enter-notification strategy. Again in green, vehicles with the
highest priority score that receive an enter-notification are shown. Yellow areas
represent the space dimension of the priority scores.

Drivers are assumed to be fully compliant to the given instructions, as in IDBL, in

a way that always seek to change lane when instructed while vehicles that don’t

receive an enter-notification will never enter the bus lane. Finally, it should be

noted that the enter-notification is not mandatory, meaning that drivers are only

expected to enter the bus lane if it’s for their own benefit.

Deep Reinforcement Density controller

Similar to IDBL, the bus is a reinforcement learning agent which decides the de-

sired bus lane density between two consecutive bus stops based on the prevail-

ing traffic conditions and an estimated deviation from a predefined timetable. The
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Soft Actor-Critic (SAC) [29] algorithm is selected for the learning process. SAC is

amodel-free, offline reinforcement learning algorithm that uses a combination of

an actor network, which is responsible for selecting actions, and a critic network,

which is responsible for evaluating the quality of the actions selected by the ac-

tor. The PPO algorithm (used in IDBL) was also tested however it produced less

favourable results during the training phase and is therefore disregarded.

The structural components of the agent, namely the state, action and reward, are

defined as follows. Everytime the bus-agent iswithin 100metres from the upcom-

ing bus stop observes a state s. The state s consists of the downstream instanta-

neous lane occupancy (as was defined in IDBL method) from the current bus stop

until the next bus stop obl, the instantaneous lane occupancy on the correspond-

ing adjacent lane segment oadj, the mean travel speed (5 min aggregation period)

of vehicles on the dynamic bus lane speedbl the mean travel speed (5min aggrega-

tion period) of vehicles on the corresponding adjacent lane segment speedadj, the

estimated arrival delay to the upcoming bus stop of the bus delayestbs , the previously

taken action aprev and the successful lane changes, lcprevsuc , as a result of the given

exit-instructions based on the previous action of the agent. Moreover, for each

traffic signal (2 in total) between the current and the next bus stop the agent also

observes regarding traffic signal’s upstream rightmost lane, the number of wait-

ing vehicles n
tli
bl , i = 1, 2, the total waiting time of vehicles W

tli
bl i = 1, 2, and the

instantaneous lane occupancy o
tli
bl , i = 1, 2. The same values are computed for all

corresponding adjacent lanes, i.e., the number of waiting vehicles n
tli
adj , i = 1, 2, the

total waiting time of vehiclesW
tli
adj , i = 1, 2, and the instantaneous lane occupancy

o
tli
adj , i = 1, 2.

When the bus-agent is within 100 metres from the upcoming bus stop based on

the observed state s takes action a. The action a ∈ [0, 1] and corresponds to the

desired percentage of bus lane coverage by vehicles, therefore, the action space A

is continuous,A = [0, 1]. The generated value is transformed to the desired density

of the bus lane and then the action is applied.

As described above, BLDCmethod objective is to find the optimal balance between

ensuring reliable public transportation and accommodating vehicular flows. To

that end, the goal of the bus-agent is to minimise the bus stop arrival time de-

viation from a given timetable while simultaneously minimise the disturbance to

vehicular traffic due to the emerging lane changing behaviour. Thus, the reward r

is defined as:

r = −α|testar − ts| − β|lcsuc| (33)

Where testar is bus’ estimated arrival time at the next bus stop, ts is the scheduled ar-

rival time at the next bus stop given by the predefined timetable, lcsuc is the num-
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ber of successful lane changes as a result of the given exit-instructions based on

the current action of the agent and finally α, β are the weights for the timetable-

related and disturbance-related part of the reward, respectively.

The α and β weights are hyperparameters and the best values were found to be 1.0

and 2.0, respectively.

5.1.4 Implementation Details

Description of the testbed network

SUMO (Simulation of Urban MObility) [6] micro-simulation framework is used to

create an artificial 3 km corridor (Figure 28) consisting of 8 4-leg consecutive in-

tersections. The main artery’s edges have a length of 350 metres and consist of 3

lanes with the upstream edges having one extra reserved lane for left turn with an

80 metres reservation distance. The secondary roads’ edges have a length of 250

metres and consist of 2 lanes. 5 bus stops were positioned along the corridor with

700m distance between them. The traffic signals have a 4-phase program with

protected left turns. Moreover, the traffic signal programs were optimised with a

fixed90seconds cycle in termsofgreen timeallocationandsynchronisation (green

waves) as this is usually the case in real-life urban corridors.

Figure 28: The testbed network in SUMO environment

Traffic Demand Scenarios and Bus Timetable Extraction

Initially, a one-hour baseline traffic demand scenario is created that resembles

normal traffic conditions and corresponds to approximately 600 veh/hour per lane

for the main artery and 150 veh/hour per lane for the secondary roads. To ensure

uniform conditions on themain artery, a constrained convex optimization frame-

workwas developed. The constraints concernmainly right and left turns. Further-

more, the uninterruptedflow in the entrances of the testbednetwork results in un-

realistic queue accumulations and for that reason theflowwas slightly constrained

also to avoid such phenomena. The derivation of the bus timetable was based on

the baseline scenario. Inmore detail, a one hour simulation using the baseline sce-

nario’s hourly demandwith a warm-up period of 15minutes was run for 100 times

with random seeds. The bus timetable resulted as the meanmeasured arrival time

for each bus stop.
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Training Setting

Bothdescribed reinforcement learning agentswere trainedunder the same setting.

First the task at handwas designed to be episodic and the environmentwas single-

agent. In each episode one bus-agent interacts with the environment, starting

from the first bus stop (initial state) and continuing until reaching the final bus

stop (terminal state). For increasedgeneralisation threemorekeystepswereadded

to the training setting. First, the bus in each episode is inserted with a random de-

lay ranging from-2minutes to +3minutes. Second, the bus to enter the simulation

was chosen randomly from a schedule with 6 buses per hour (per direction). The

simulation was run (including warm up period) until the arrival of the bus at the

first bus stop for IDBL (orwithin a distance of 100m for BLDC) and then the episode

was initialised. This ensures that the agent experiences diverse traffic conditions

and queue accumulations as the traffic evolves. Third, the demand of each episode

is generated as a random scale of the baseline scenario demand ranging from 0.5-

1.5.

Moreover, a synchronous environment parallelization is performed. Parallel en-

vironments in reinforcement learning training can greatly enhance the training

process by allowing for more samples to be collected in a shorter amount of time.

By training multiple instances of an agent in parallel, each instance can run in its

own environment and collect data independently. This can lead to more diverse

and comprehensive training data, leading to better generalisation and improved

performance of the trained agent. Finally, parallel training can lead to faster con-

vergence and a reduction in training time compared to a single-threaded training

approach. This resulted to a training time below 2 hours until convergence.

Evaluation Procedure

Although the training was conducted in a single-agent environment both for IDBL

and BLDC method, the evaluation was carried out in a multi-agent one with bus

flow continuously entering the simulation environment. More precisely, for each

of the developed methods, 2 sets of 11 1-hour simulation scenarios are executed

10 times each (with random seeds) and averaged, that vary with respect to bus fre-

quency (6 and 12 buses per hour per direction on themain artery) anddemand scale

(0.5-1.5 with step 0.1). The proposed strategies are compared with the most fre-

quent practice regarding bus lane control, i.e. dedicated bus lanes and with mixed

traffic conditions (no control).

To compare the aforementioned strategies regarding the compliance with the de-

rived bus timetables, themetric ofMeanAbsolute Arrival TimeDeviation (MAATD)

is computed which is defined as:

MAATD =

∑n
i=1

∑ki
j=1

∣∣∣ti,jo − ti,js
∣∣∣

n
∑n

i=1 ki
(34)
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∀ bus stop i, ∀ bus j that reached bus stop i

where ti,jo is the observed arrival time at bus stop i of bus j after the implementa-

tion of a strategy and ti,js is the arrival time at bus stop i of bus j given by the derived

bus timetable. This metric essentially is an aggregation of the observed deviations

from the timetable (either ahead or behind schedule) of all the buses that have en-

tered the simulation within the one hour evaluation period. Moreover, the mean

time headways between consecutive buses aremeasured and themean time head-

way is extracted. For a fair comparison of the overall impact of each strategy to

vehicular traffic, the Total Travel Time and Delay (TTTD) metric is measured and

is defined as:

TTTDD = TotalTravelT ime+ TotalDepartDelay (35)

Where TotalTravelT ime denotes the total travel time of all vehicles inserted in the

simulation with the vehicles generated within the warm up period excluded and

TotalDepartDelay denotes the total departure delay of the inserted vehicles as well

as of the vehicles waiting to be inserted into the simulation. Again, the vehicles

generated within the warm up period are excluded.

5.1.5 Findings

Regarding the IDBL method the clearing distance of the dynamic bus lane is a hy-

perparameter. For that reason, fourdifferent clearingdistances (100m,200m, 300m

and 400m) were trained and tested.

In Figure 29 the training results for all clearing distances are depicted. Allmethods

have converged and it is obvious that clearing distance equal to 300 metres has

performed better concerning training. As is depicted in Figure 30 in terms ofMean

AbsoluteArrival TimeDeviation the best clearingdistance onaverage is 300metres

and this model is used in the comparison with the other methods.

Figure 29: Training results for IDBL for all clearing distances.
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(a) (b)

Figure 30: Mean Absolute Arrival Time Deviation of IDBL per clearing distance for
6 buses per hour (a) and 12 buses per hour (b)

To evaluate the compliance with the derived bus timetable, theMean Absolute Ar-

rival Time Deviation as well as the Average Time Headways are depicted in Figure

31 and 32, respectively. As is expected the dedicated bus lane for demand scale less

than 1.4 is the worst method regarding Mean Absolute Arrival Time Deviation for

both bus demands. This highlights that this method is suitable only under certain

traffic conditions at least for bus prioritisation. The other 3methods are closewith

Mean Absolute Arrival Time Deviation below 30s until the demand scale is equal to

1.3. Above that value, mixed traffic exhibits a more severe divergence reaching a

four minute Mean Absolute Arrival Time Deviation for 6 bph and 12 bph with the

proposed methods staying below 2 minutes for 6 bph and below one minute for

12 bph. Moreover, the IDBL method seems to perform slightly better for higher

demand scales compared to the BLDC method. An interesting result is that both

methods (BLDCand IDBL) showabetter performance for 12bphcompared to6bph.

This can be explained by the more intense influence between consecutive buses’

actions when the time headway is smaller.

Concerning Average Time Headway the best method is dedicated bus lanes as is

expected. Again for mixed traffic and for demand scale above 1.2 the average time

headways are steeply increasing (for 6bph and 12 bph). The same holds for the two

proposedmethods for 6bhpwith amilder deviation from the desired timeheadway

for demand scale above 1.3. However, for 12 bhp they exhibit an impressive low

deviation from the desired time headways for all tested demand scales.

To evaluate the impact and disturbance of each strategy to vehicular traffic the

TTTDDmetric of vehicles is depicted in Figure 10. Both the proposed methods are

close (slightly worse) tomixed trafficwhere the vehicular traffic is completely un-

interrupted for all demand scales and for both bus demands. Moreover, the impact

of BLDC is less compared to IDBL for larger demand scales (above 1.2) and on aver-

age is of the order of 6% less. The low vehicular impact of IDBL is due to the small

clearing distance although it is less flexible when it comes to bus lane evacuation.
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(a) (b)

Figure 31: Mean Absolute Arrival Time Deviation for all methods for 6 buses per
hour (a) and 12 buses per hour (b)

(a) (b)

Figure 32: Average Time Headway for all methods for 6 buses per hour (a) and
12 buses per hour (b).

(a) (b)

Figure 33: Total travel time and delay of vehicles for all methods for 6 buses per
hour (a) and 12 buses per hour (b).

5.1.6 Concluding remarks

This part introduced two novel approaches for dynamic bus lane control based on

Reinforcement Learning, IDBL and BLDC, whose aim is to enhance the reliability

and efficiency of bus operation while minimising the impact on vehicular traffic.
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Reinforcement Learning gives the ability to bus-agents to learn the correlation be-

tween prevailing traffic conditions and expected transit delays. The results’ anal-

ysis showed that both methods manage to minimise transit delays even in higher

demand scenarios while maintaining the disturbance of vehicular traffic close to

mixed traffic conditions. The fully connected environment and drivers’ full com-

pliance are some strong assumptions thatweremade. The formerwas necessary in

order to provide bothmethodswith crucial information about traffic conditions on

the network but creates some difficulties for the implementation of the proposed

methods in the field as is demanding from an infrastructure point of view. The lat-

ter is expected to have enhanced the results to some extent as drivers in real life

may not follow the given instructions andmaybe in some situations exhibit delin-

quent behaviour. Some next steps for further research, is to conduct a sensitivity

analysis of the proposed methods on connected vehicles penetration and drivers’

compliance rates with some extensions needed to be made in order to substitute

the missing information due to reduced coverage of connected vehicles by using

for example induction loops. Another natural direction is to combine both worlds

so as to take advantage of eachmethod’s benefits and test it in real urban corridors.

5.2 DynamicBus LanecontrolandPerimeterCon-

trol

5.2.1 Introduction

This section continues to discuss the concept of Dynamic Bus Lanes (DyBL), as in-

troduced by [27] in the framework of distributed network control, in combination

with perimeter control, as proposed by EPFL. A DyBL can be defined as a controlled

lane destined primarily for buses, which also allows certain number of private ve-

hicles to use it when traffic conditions allow for it, in the sense that bus priority

is guaranteed in cases of high congestion. The idea is to investigate the potential

benefits of a dynamically controlled car entry rate in the bus priority lane based on

real-time traffic input in network-scale signal control, in parallel with perimeter

control, which would ensure public transport priority while making a better use of

the road space than conventional Dedicated Bus Lanes (DBL) in cases of uncon-

gested traffic. A DyBL is similar to a DBL in design, with the difference of requiring

special signaling equipment (e.g. dedicated traffic lights, pavement lights or vari-

ablemessage signs) to informdrivers of whether cars are allowed to enter or not in

real time. A schematic representation of DBL and DyBL is shown in figure 34.

The objectives of this study are to implement the concept of DyBL in combination

with perimeter control and evaluate different control algorithms and system ar-

chitectures in terms of network performance, aiming at minimizing total passen-

ger travel time. A simple dynamic controller is configured for controlling DyBL car
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Figure 34: Mixed-use lanes, Dedicated Bus Lane (DBL) and Dynamic Bus Lane
(DyBL)

inflow and implemented via microsimulation for a realistic network and demand

scenario, in combination with a simple two-region perimeter control.

5.2.2 Methodology

Dynamic control of Bus Lanes

Buses always use the dynamic bus lane while car vehicles can use the mixed-use

lane or the dynamic bus lane, on condition that this is allowed. Private vehicles

can change lane only at the beginning or the end of each section in the dynamic

corridor. While travelling within the corridor, they should continue on the lane

they chose when they entered. The dynamic controller for cars shown below, is

applied:

pt = pt−1 +Kmix(kmix,t−kmix,s)−KDL(kDL,t−kDL,s) (36)

In the above, pt is the percentage of cars which are allowed to use dynamic lanes at

time step t, kmix,t is the average car density over allmixed-use lanes in the corridor

at time t, kDL,t is the instantaneouscardensityon thedynamic lane, kmix,s andkDL,s

are the setpoints for the twomeasuresandKmix andKDL are controller coefficients

for the two error terms. Note that coefficientsKmix,KDL are positive, so when the

difference kDL,t−kDL,s is positive, i.e. the density in the dynamic lane is above the

setpoint, the second cost term will try to decrease the percentage of cars allowed.

Similarly, when the density inmixed-use lanes is above the setpoint, the first cost

term will try to increase the percentage of cars in the dynamic lane. The produced

car percentage is rounded into 0, 10, 20, ... % before being applied. The renewed

percentage is applied only at the end of a control time frame of 200 sec, which is

longer than the traffic signal cycle (90 sec). The density setpoints correspond to

the critical values as indicated by the fundamental diagram of the studied corridor

3, for the mixed and dynamic lanes.

Perimeter Control

Similar to section 4.2.1, the concept of perimeter control is to adjust traffic signal
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timing of a set of intersections on the boundaries between protected regions in or-

der to control transfer flows andmaintain high flows in the interior of the regions.

In this way, highly congested stated are avoided and cars are forced to wait out-

side the perimeter of the region before being allowed to enter. With the objective

of testing DyBL in paraller with PC, we introduce a simple PC regulator with only a

proportional term, applied for the green time adjustment of the controlled inter-

regional approaches, as follows.

Gt = Gt−1 + U(nt − ns) (37)

where Gt is the vector of green times at time t, nt is the vector of regional accu-

mulations, ns is the vector of accumulation setpoints andU is the cost matrix. The

setpoints are the critical accumulations according to the observedMFDs. The con-

troller gets activated when accumulation in region 2 (central) overpasses a prede-

fined threshold nλ. This practice is followed to avoid a control that tries to increase

vehicle accumulation in the city center because it is lower than critical in cases of

lower congestion. Buses are assumed to be equivalent to 3.9 vehicles when accu-

mulation is calculated. The update values for green time are calculated for each

signal group (region 1 to 2 and region 2 to 1) and applied to all traffic signals in the

same way.

5.2.3 Case study and implementation

Simulation experiments are performed using microscopic simulator by Aimsun,

for the implementation of the proposed dynamic control strategy, combining the

control of a dynamic bus lane corridor with neighborhood-scale perimeter con-

trol. The utilized network, whichmakes part of the Barcelona city center as shown

in 35(a), consists of 428 links and 158 intersections. There are 112 bus lines and

their headway is 8 minutes per line. The free-flow bus speed on all links is set to

15 km/h. The network is partitioned into two homogeneous regions as shown in

Figure 35(a) in different colors (1 and 2). The nodes participating in the perimeter

control scheme are shown on the networkmap. The city center is referred to as re-

gion 2 and the peripheral area as region 1. The traffic lights which control the flow

from region1 to 2 are shown as red dots and the ones from region 2 to 1 as blue dots.

The two groups of traffic lights are updated based on the vehicles accumulation in

each region and according to anMFD-based perimeter control regulator.

A dynamic bus lane is placed in a central corridor of region 1 of the networkwith di-

rection towards the city center, which consists of a series of consecutive links. The

corridor ends at a perimeter control node where queue is expected to form in peak

hour due to PC gating. The simulated car traffic demand is shown in figure 35(b).

The car demand consists of 1.5 h of peak traffic, preceded by 45 min of increasing

demand and followed by 45 min of decreasing demand. Car occupancy is assumed

to be 1 passenger and the total number of car trips is 91640 veh during the entire
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simulation. Buses follow a fixed frequency timetable with 8min interval of depar-

ture for each line over the 6 hour-period, starting on the same timing as cars. It

means 3360 buses run on the network during 3 hours. The mode share is assumed

to be 40% bus and 60% car and thus the per bus occupancy is assumed to be 24

pax/bus on average. In terms of implementation within the microscopic simula-

tor, cars that are allowed to use the dynamic bus lanes do indeed use them, in other

words the respective amount of car drivers will be “forced” by the simulator to use

the dynamic lane. In other words, the indicated by the controller number of cars

in the dynamic lane is very close to the simulated one. This approach is adopted in

the preliminary phase of our study, while drivers’ free choice of whether theywant

to use the lane can be introduced at a later stage.

(a) (b)

(c)

Figure 35: Case study description. (a) Plan of the studied network of Barcelona
city center; (b) Profile of the dynamic demand; (c) Detailed position of the dy-
namic bus lane corridor, close to perimeter control node.

5.2.4 Results

Figure 36 shows the observed MFDs of the two regions of the studied network, for

the utilized demand scenario, in the case of no adaptive signal control (fixed-time

control, FTC) and in the case of perimeter control. While region 1 remains uncon-
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Figure 36: Macroscopic Fundamental Diagrams for regions 1 and 2 in the case of
fixed-time control and single perimeter control.

Table 4: PHT difference with respect to the case of no adaptive control (FTC) of
all tested scenarios.

bus (%) car (%) total (%)

No Control 0.00 (21203 [pax *h]) 0.00 (8157 [pax*h]) 0.00 (29282 [pax*h])

single PC -5.02 -9.23 -5.68

PC + 0% (DBL) -5.60 -10.2 -6.85

PC + 10% -5.61 -9.88 -6.81

PC + 20% -5.57 -9.46 -6.30

PC + (DyBL) -6.68 -10.3 -6.89

gested in both scenarios, in region 2 a capacity drop andhysteresis loop is observed

in FTC which is improved in the PC case.

Figure 37 presents the simulation results of a set of different control scenarios.

Boxplots refer to a set of 5 replications with different initial seeds for the stochas-

tic parts of the experiment (e.g. demand generation, path selection etc.) for every

case. On the vertical axis, the percentile difference of Passenger Hours Traveled

(PHT) for buses, cars and in total are shown with reference to the FTC case (la-

beled as ’No Control’). Results are presented for the cases of single PC (no dynamic

lane), PC with dedicated bus lane (no cars allowed), PC with bus lane with a fixed

10% and 20 % of cars allowed to enter and PC with completely dynamic bus lane,

with the controlled described above. We observe that the combined case of PC and

DyBL outperforms all other cases, although only slightly for the specific demand

scenario. As expected, significant improvement comes as a result of PC, but fur-

ther improvement seems to relate to the concept of separating cars from buses.

More specifically, car travel time seems to decrease when dedicated lanes are im-

plemented, aswell as when 10%and 20%of cars are allowed in the lane. The high-

72 DIT4TraM_D3.1_Passenger_v0.1



Figure 37: Comparison of Passenger Hour Traveled (PHT) change of all scenarios
tested compared to the “no control” case (FTC): Single PC, PC + DBL (0%), PC +
bus lane with 10% and 20% fixed allowed car entry rate, and PC + fully dynamic
DyBL.

est improvement recorded for the combined case of PC and dynamic control of the

bus lane corridor is 6.89% over the total, with a higher improvement for cars and

lower for buses, compared to the single PC case. This indicates that the dynamic

control of car entry rate in dynamic lanesmay be a promising direction in the con-

trol of bi-modal networks and further research is required on this topic. Detailed

numerical results are listed in Table 4

Figure 38 presents an analysis of one replication of the case of single PC and one

of the case of PC combined with dynamic control of bus lane (DyBL). In 38(a) the

time-series of regional accumulation in both regions is shown, together with the

setpoints used in PC and the activation threshold. We observe practically no differ-

ence after dynamic control of bus lane is introduced on top od PC. In 38(b) the im-

plemented changes in green time of the controlled approaches due to PC is shown,

where green time is adjusted to reduce inflow and increase outflow of region 2,

which is protected from congestion. In 38(c) we see the evolution of density inside

the dynamic lane during the simulation, together with the control-defined per-

centageof allowed cars. In 38(d), the evolutionof averagedensity in themixed-use

lanes of the corridor is shown.

For comparison reasons, figure 39 shows simulation results of scenarios where

only a fixed percentage of cars are allowed in the bus lane corridor. without PC,
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Figure 38: Analysis on one replication of the case PC + DyBL. (a) Regional accu-
mulation time-series with PC setpoints and activation threshold; (b) Time-series
of interregional green time for the PC intersections; (c) Time-series of density in
the dynamic lane for the cases of single PC and PC + DyBL; (d) Time-series of
average density in mixed-use lanes of the corridor, for the cases of single PC and
PC + DyBL.

for the same demand scenario. Again, the vertical axis represents the percentile

improvement of PHT with respect to the FTC case. While further experiments are

necessary to validate these findings, we observe a slight improvement in the case

where 10% of the cars are using the bus lane compared to the case of DBL (no cars

allowed) and a smaller improvement for the case of 20% for the bus travel time,

as well as the total. Interestingly, all cases of operational bus lane seem to be im-

proved compared to the FTC with no lane restriction, while 10% allowed car rate

seems to be better than 20%, both for the buses and overall.

5.2.5 Findings

In this preliminary analysis, the concept of dynamic bus lanes is implemented in

combination with perimeter control in a large-scale network in microscopic sim-

ulation environment. Simple dynamic feedback regulators are tested both for the

green time adjustment of PC as well as for the control of car entry rate in the dy-
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Figure 39: PHT change in cases of fixed allowed car percentage in the dynamic
lane compared to the FTC case.

namic lanes. The results of a limited preliminary study for one moderate demand

scenario show that the combined PC with the dynamic control of bus lanes tend

to lead in better performance in terms of total passenger travel time, being more

beneficial for both cars andbus passengers. Further research is required to validate

this finding, by testing improved regulators for both controllers and potentially by

considering state variables directly related to buses, such as bus speed.

75 DIT4TraM_D3.1_Passenger_v0.1



6 Strategyanddesignof theUtrecht pilot

6.1 Traffic management platform

In this section we discuss the dynamic traffic management platform equipped in

the pilot city of Utrecht, the Netherlands, describing its current functioning and

detailing the extensions that are planned in relation to this project. The content in

the section is summarized by TUD and Arane.

6.1.1 Integrated networkmanagement (INM)

The INM system is developed for an urban network where both arterial streets and

highways occur in the network (see Figure 40). The system considers the state of

congestion and starts reacting at different points in the network, not only locally.

The current state is measured, and real-time adaptation of traffic lights is taken.

The INM system is therefore classified as adaptive coordinated control. Initially,

the system was designed to avoid congestion on the highway while using ramp

metering to assure the flow of cars. The main principles followed by this control

method are [30]:

1. Use spare capacity while using available buffer space in the network

2. Prevent capacity drop

3. Prevent spill-back and blockades

4. Bottleneck resolution, first locally then network-wide

Measures are taken in two steps; first, the outflow is increased, and then, if nec-

essary, the inflow is limited. The control approach in Utrecht uses the same prin-

ciples as the highway-developed control scheme on an urban network. A critical

corridor is defined based on historical events. It is supervised by the bottleneck

investigator (Dutch: Kiemenspeurder), which predicts the moment of a possible

breakdown three minutes ahead of its occurrence for a highway bottleneck. In the

case of an urban bottleneck, the prediction time is shorter. The process of the sys-

tem is summarised inFigure41. With radars in theurban sectors and loopdetectors

on the highway, the number of cars ismeasured and given as input to the queue es-

timator and the bottleneck investigator. Together they build the monitoring unit.

The outputs are given to the network supervisor, who builds the strategic control

layer. It defines which intersection becomes a Master or a Cleaner. The network

supervisor passes the information on to the sub-network supervisor, which over-

sees the available buffer space around the Masters. It can activate the Slave and

Guard functions at intersections. The intersection’s role defines how green times

of that intersection are calculated, and this information is then given to the traffic

signals.
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Figure 40: Location of the pilot in Utrecht (Source: Google Maps).

6.1.2 Modules of the INM system

Figure 42 shows the implementation of the INM system in one direction of ’t Goy-

laan, an arterial corridor where the system is currently operational in the city of

Utrecht (NL). The intersection downstream of the critical corridor can be entitled

with aMaster function to increase the outflow (1). The first intersection upstream

of the Master provides the Master intersection with cars to process through the

critical corridor, thus becoming a Cleaner (2). The intersection downstream can be

activated to guarantee the accommodation of the increased number of cars; this

function is called the Guard (3). Through the activation of the Guard, some down-

streamdirections are givenmore green, and competingmovements are likely to be

held back (4). Finally, the Slave function can be activated everywherewhere certain

movements are held back to the benefit of the traffic flow on the critical corridor

(5). The Slave makes sure to distribute queues over the system evenly. If these

measures are not enough to stabilize the system, the second step, limiting the in-

flow, can also be applied to the urban corridor. In that case, the intersection up-

streamof the critical corridor becomes a “limit inflow”–Master and some vehicles

are buffered in the surrounding approaches (6). This calls again for Slave functions

at the upstream intersections (7). More details about the system’s functions can be

found in the module specification.
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Figure 41: Scheme of the INM system.
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Figure 42: Example of implemented INM system in ’t Goylaan [31].

Note that the normalization process for each module is not explicitly explained in

this work, but can be found in the basic specification [31]. The idea behind the nor-

malization process is to have more stability when switching the system off. The

system is not needed anymore if the number of cars drops below the activation

threshold. To prevent fluctuations around the threshold, the system is switched

off based on the average sum delta green time and a smoothing parameter.

“Increasing Outflow”–Master

If the given threshold of thefilling in the critical road section is reached, theMaster

is switched on. First, the Master intersection increases the outflow, which means

green time in the out-flowing directions is increased. This increase is determined

based on real-timemeasurements which are, in this case, the total queue length x

in the critical corridor. The variable is updated through a feedback control mecha-

nism,which brings the advantage of less abrupt changes and considers the value of

the previous time step. Equation (38) shows an example for the sum of delta green

time∆gΣ.

∆gΣ,current = ∆gΣ,previous−K1×
(
xcurrent − x∗

)
×∆T −K2×

(
xcurrent − xprevious

)
(38)

where x refers to queue length, x∗ is the target value,K1 andK2 are tuning param-

eters respectively associatedwith the deviation of the target value and the variance

of the previous time step, and∆T is the time step.

The calculated sum of delta green times needs to respect the minimum andmaxi-
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mum values (39).

∆gΣ,current = min

max

∆gΣ,current,
∑

idir∈Jdir
iMaster

∆gmin
idir

 ,
∑

idir∈Jdir
iMaster

∆gmax
idir


(39)

where∆gmin
idir

and∆gmax
idir

are theminimumandmaximumgreen times per direction

and J
iMaster are the available direction for that Master intersection.

All directions should increase their respective outflow, therefore the sum of delta

green times is divided proportionally to the range of green time e.g., maximum

green time ∆gmax
idir

- minimum green time ∆gmin
idir

. This then gives the delta green

time per direction idir in Equation (40).

∆gMaster
idir,iMaster =

∆gΣ,current∑
j∈Jdir ∆gmax

j −∆gmin
j

(
∆gmax

idir
−∆gmin

idir

)
(40)

Cleaner

The intersection upstream of a Master intersection is automatically activated to

become a Cleaner. This means that it makes sure to supply the Master intersec-

tionwith incoming cars in the queuewhile increasing the green times in the direc-

tion of the Master. The green times are calculated based on the buffer filling. The

principle is the same as for the Master; feedback control is used to update the sum

of delta green times (41), and then again, the minimum and maximum values are

controlled for (42).

∆gΣ,current = ∆gΣ,previous−K1×
(
rfill,current − rfill,∗

)
×∆T−K2×

(
rfill,current − rfill,previous

)
(41)

where rfill is the relative buffer fill, rfill,∗ the target value (typically 20%), and the

other terms are the same as for the Master in (39).

The minimum andmaximum values of delta green times must be respected:

∆gΣ,current = min

max

∆gΣ,current,
∑

idir∈Jdir,Cleaner
iCleaner

∆gmin
idir

 ,
∑

idir∈Jdir,Cleaner
iCleaner

∆gmax
idir


(42)

Then for each direction, the delta green time is calculated based on the range of
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delta green time:

∆gCleaner
idir

=
∆gΣ,current∑

j∈Jdir,Cleaner ∆gmax
j −∆gmin

j

(
∆gmax

idir
−∆gmin

idir

)
(43)

Guard

Depending on the number of cars on the road section between the Master and its

downstream intersection, that intersectionwill be activated as a Guard. The Guard

ensures that enough buffer space is created for the cars coming from the Mas-

ter. This means that the green times of that approach are adapted, and competing

movements are (potentially) buffered. Green times are calculated following the

same principle as for the Cleaner. The only difference is that the activation of the

Guard relies on road sections downstream of the Master, whereas the Cleaner de-

pends on the ones upstream.

∆gΣ,current = ∆gΣ,previous−K1×
(
rfill,current − rfill,∗

)
×∆T−K2×

(
rfill,current − rfill,previous

)
(44)

∆gΣ,current = min

max

∆gΣ,current,
∑

idir∈Jdir,Guard
iGuard

∆gmin
idir

 ,
∑

idir∈Jdir,Guard
iGuard

∆gmax
idir


(45)

∆gGuard
idir

=
∆gΣ,current∑

j∈Jdir,Guard ∆gmax
j −∆gmin

j

(
∆gmax

idir
−∆gmin

idir

)
(46)

Slave

If trafficmovementsarebuffered inadjacent roads, theactivationof theSlave func-

tion in theupstreamintersections takesplacewhenacertain thresholdof thebuffer

space filling in the road is reached. The Slave’smain goal is to prevent blockages of

intersections due to said buffering. Consequently, the green times are calculated

so that the queues in each approach to the intersection are equally distributed.

∆gΣ,current = ∆gΣ,previous−K1×
(
rfill,current − rfill,∗

)
×∆T−K2

(
rfill,current − rfill,previous

)
(47)
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∆gΣ,current = min

max

∆gΣ,current,
∑

idir∈Jdir,Slave
iSlave

∆gmin
idir

 ,
∑

idir∈Jdir,Slave
iSlave

∆gmax
idir


(48)

∆gSlave
idir

=
∆gΣ,current∑

j∈Idir r
space,upstream
j

r
space,upstream

idir
(49)

“Limiting Inflow”–Master

If the critical road section filling exceeds a second threshold (higher than for the

“Increasing Outflow”–Master), the inflow is limited, and traffic is buffered up-

stream. In this case, the intersectionsupstreamturn intoa”limiting inflow”–Master,

and the intersection(s) upstream of the Master can turn into Slave(s) to distribute

the queues in the buffers.

In the case of the “limiting inflow”–Master, the sum of delta green times is calcu-

lated as in Equations (39) and (40). The delta green times are calculated propor-

tionally to the available buffer space (50). As a result of this, the sumof delta green

times is negative since the system reduces the green time to decrease the inflow.

The resulting green time can be smaller than the minimum green time because of

the fraction of available space. In that case, the green time needs to be at least the

minimumvalue, and the other green times need to be recalculated according to the

new value of the sum of delta green times.

∆gMaster
idir,iMaster =

∆gΣ,current∑
j∈Idir r

space,upstream
j

r
space,upstream

idir
(50)

6.2 DIT4TraM extensions to INM

The functions described in the earlier sections represent a task-wise decentral-

ization of traffic management actions, following expert design principles. In its

current form and implementation, the approach is static, that is, the roles of the

intersections are defined a-priori and can only be activated or deactivated, based

on the aforementioned thresholds. An intersection cannot be co-opted to act as

Slave if its role has been predetermined as Guard, or vice-versa.

One of the key outcomes envisioned through the developments of DIT4TraM, and

specifically in relation to the pilot study planned in the city of Utrecht, is that of
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introducing dynamicity to this approach, guiding the selection and assignment of

intersection tasks based on the status of the traffic network. To this end, the Jam

Tree approach discussed in earlier sessions will be adopted, through appropriate

parameter calibration. Once a JamTree is detected, by tracking its spatio-temporal

evolution the approachwill allow identifyingwhich intersections contribute to the

target bottleneck, and guide the appropriate distribution of tasks (Master, Guard,

Cleaner, Slave) leading to optimal bottleneck resolution. In order to achieve said

objective, the INM approach must be further extended in order to be able to take

full advantage of additional data sources, chiefly Floating Car Data (FCD), there-

fore ensuring that the collected network information is of sufficiently high quality.

The integration of FCDallows dynamic assignment of the functionsMaster, Guard,

Cleaner and Slave. This prevents suboptimal control performance during a-typical

situations when functions are assigned statically.

Finally, extensions to the core functionality of thedifferentmoduleswill be sought,

specifically in relation to measurements originating from soft modes. To support

this development, partners involved in the Utrecht pilot are setting up appropri-

ate data sources to collect bicycle information (trajectories, approaching the con-

trolled intersection(s)). An objective of the coming developments is to extend the

logicof INMtoaccount for thequalityof serviceof (competing) softmodes, thereby

extending toward multi-modal management. A preliminary study was conducted

considering potential multi-modal extensions for Public Transport along the ’t

Goylaan corridor, leading to recommendations as tohow the logic of key INMcom-

ponents could be extended to ensure better performance [32].

Benefits of integrating Floating Car Data

The use of FCD to identify JamTrees to estimate the current state of the trafficnet-

work has multiple benefits. Besides the possibility to dynamically assign roles to

intersection controllers and ramp meters based on Jam Trees, it also allows us to

use the FCD as sensor in the monitoring modules of the system. Currently, radar

systems are used to estimates queue lengths and available bufferspace. The control

modules take actions based on these estimates. If we make these estimates based

on FCD, which is less detailed than radar, the spatio-temporal quality will not be

the same. However, it allows us to avoid using radar data. At the boundaries of the

pilot network, wewill test if we can achieve the control goalswith the lower level of

detail. If this is succesfull, the scalability of INM will increase since FCD is widely

available in the Netherlands.

Approach of the pilot

Currently, theFCD isgatheredat thepilot site. For each roadsectionbetween inter-

sections, a 1-minute average speed is delevered. Based on these speed measures,
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a spatio-temporal analysis is performed. The goal of the analysis is to find up-

and downstream interactions between road sections: under which conditions do

we identify spillback onto upstream roads? The data analysis leads to a specifica-

tion of the Jam Tree algorithm, which will be implemented by Technolution.

The involved control modules that will use the Jam Trees are the network super-

visor and the subnetwork supervisor. They will be adjusted to allow dynamic as-

signment of functions within the network. To achieve this, they need a new inter-

face with the Jam Tree identifier. After testing, the DIT4TraM pilot period will be

used to evaluate the system. During the pilot the new and adjustedmudules will be

switched on-and-off on a weekly basis.

Parallel to the Jam Tree development, the possible use of FCD in INMwill be anal-

ysed. This is done by analysing historical data from the monitoring modules in

the INM-system, and by comparing themwith FCD. The different spatio-temporal

resolutions (10 sec × 7 meters versus 1 minute × ≈ 150 meters) are addressed

by comparing different aggregates. Based on the results a specification for ad-

justed control modules will be delivered for implementation by Technolution. The

adjusted modules will use FCD instead of radar-data. Also these modules will be

tested during the pilot period by switching them on and off on a weekly basis. The

evaluation will focus on how successful the INM-system can reach it control tar-

gets with FCD.
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7 Conclusion

Task 3.1 has developed a variety of distributed algorithms to govern transporta-

tion networks, that are geographically distributed and with multiple entities and

operators.

At the intersection level, we describe a novel framework for controlling intersec-

tions called the Integrated Signal and Bus Lane Control (ISBLC). This framework

aims tomaximize the passenger throughput at intersections and provide the high-

est level of service forpublic transportpassengers. The ISBLCadjusts trafficsignals

and assigns dedicated bus lanes based on observed traffic conditions and infor-

mation received from Vehicle-to-Infrastructure (V2I) communication regarding

vehicle/bus passenger occupancy and bus delays. A state-of-the-art reinforce-

ment learning algorithm is used to reduce total passenger waiting time. The re-

sults of the ISBLC are compared to traditional traffic signal and bus prioritiza-

tion approaches to evaluate its effectiveness and inform future research towards

passenger-oriented andmulti-modal traffic control schemes.

At the corridor level, the proposed DRL model appears to be a promising solution

for the efficientmanagement of traffic signals inmulti-modal corridor-level net-

works. By combining the advantages of reinforcement learning and deep learn-

ing, the model can effectively capture the complex interactions between private

car traffic and bus transit, and adapt to different road configurations.

At the network level, we have developed a two-layer control framework, which

combines the benefits of both Max Pressure and Perimeter Control strategies to

improve traffic signal control performance in congestednetworks. The upper layer

is dedicated to PC and operates at an aggregated scale, specifying the target inter-

regional exchange flows between congested regions. The lower layer is dedicated

toMP and operates at a distributed level, adjusting the green times of intersections

based on real-time queue measurements.

In themulti-modal context, we proceed to use reinforcement learning algorithms

to optimally control the allocation of road space between buses and vehicles in

real-time, taking into account the dynamic traffic conditions and bus delays. The

algorithms are trained to minimize bus delay and to ensure that the travel time

of the vehicular traffic is not significantly affected. The IDBL strategy creates dy-

namic bus lanes that adapt to the changing traffic conditions, allowing for a more

efficient use of the road space for buses and reducing the likelihood of bus delays.

The BLDC strategy takes this one step further by also considering the density of

vehicles in the general traffic lanes, thereby ensuring a more balanced allocation

of road space.

Finally, Task 3.1 envisions that somedynamicitywill be further introduced the INM

system, which is currently functioning in the Utrecht pilot. In particular, the se-

85 DIT4TraM_D3.1_Passenger_v0.1



lection and assignment of intersection tasks would be based on the status of the

traffic network with the development in DIT4TraM. The Jam Tree approach will

be adopted such that when a Jam Tree is detected, by tracking its spatio-temporal

evolution, the approachwill allow identifyingwhich intersections contribute to the

target bottleneck, and guide the appropriate distribution of tasks leading to opti-

mal bottleneck resolution.
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