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Executive summary

This report represents Deliverable 1.1 of the DIT4Tram Project, comprised of re-

search and development work carried out in Task 1.1: Benefits of a Distributed Ap-

proach, as part of Work Package 1: Next-generation multimodal traffic and trans-

portation management paradigm during the period M1–M18.

This report details theoretical and algorithmic approaches toward the study of dis-

tributed control paradigms in transportation. As modern transportation systems

increase in complexity, highcomputational costs and resilience concernsposebar-

riers to the current centralized control approach. Together with growing concerns

aboutdata-securityandprivacy, decentralized, distributedsystemsofferapromis-

ing alternative to centralized systems.

After a brief introduction to the different kinds of non-centralized control archi-

tectures in chapter 1, chapter 2 presents the benefits of decentralization for trans-

portation systems, andexamines theprice of anarchy indecentralized systems. We

find in a stylized model that, it is possible that distributed systems with suitable

information exchange and feedback/incentive systems can actually perform opti-

mally or close to optimalwith themethodologies developed inDIT4TraM.Wepoint

out that, neglecting the effect of subsystem interactions and uncertainties due to

humans in the loop, can result in an undesirable evolution of the system state.

The core of this report lies in presenting various designs and implementations of

distributed transportation systems in Chapter 3. These approaches range from i)

control of traffic signals at intersections, ii) using dynamic and flexible lane use in

multimodal transport settings, iii) repositioning and redistribution of on-demand

transport vehicles according to time-varying demand distribution, iv) auctioning

schemes for multimodal mobility services, and v) cooperative schemes for local

bottleneck control.

Westartwithenvisioningvariouspassenger-orientedcontrol architectures for large-

scaleurbansystems,whichwill benefitTask3.1. First,we look into the trafficsignal

control problem and propose three different methods.

• To exemplify the potential of distributed control in traffic signal control, we

proposed a two-layer hierarchical adaptive signal control framework for a

network-wideapplication, combiningcentralizedperimeter control (PC)with

distributed Max Pressure control.

• Wealso introduce reinforcement learning (RL)asacompatible approach,which

learns from experience and data to adapt to changing traffic patterns. Com-

pared to the centralized RL algorithm, the state-action space of Multi-Agent

ReinforcementLearningagents is reducedsignificantly, leading tobetter train-

ing performance.

5 DIT4TraM_D1.1_Benefits_v0.1



• A jam-tree approach is developed to identify traffic bottlenecks and facilitate

better signal control.

We also examine the effectiveness of dynamic Bus Lanes, which regulate the num-

ber of vehicles allowed in the bus lane based on real-time traffic information to

optimize road space use, reduce congestion, and improve the performance of both

buses and cars. Dynamic feedback regulators adjust the number of cars allowed in

the bus lane in response to traffic conditions.

Second, distributed approaches are also expected to be applied to the reposition-

ing of on-demand vehicles. We proceed to emphasize the problem of reposition-

ing on-demand transport vehicles, which will benefit Task 3.3. In particular, we

design different decentralized decisional architecture consisting of amesh of con-

trollers that divide the urban network into as many service areas. Three differ-

ent approaches to re-balance the temporal and spatial distribution of on-demand

transport vehicles, resorting to auction, multi-layer control and incentization,re-

spectively.

Third, dynamic bidding auction strategies are promising venues for decentralizing

trafficmanagement. The report also discusses auctioning schemes formultimodal

mobility services, which will benefit Task 4.2. We propose to reshape traffic signal

priority by auctioning strategies so as to take into account e.g. vehicle occupancy,

public transport services, ride-sharing, etc, contributing to sustainability objec-

tives.

Last,wealso illustrate theconnectionbetweenTask 1.1with thecooperative schemes

for local bottleneck control, which will be developed in Task 2.4. By introducing

information sources from connected vehicles, we develop appropriate prediction

models in an MPC framework for both non-connected and connected traffic par-

ticipants, reflecting the different information quality and granularity. Thus, coop-

eration between the different users (classes) can be achieved under certain condi-

tions.
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1 Introduction

Modern transportation systems are becoming increasingly complex due to the in-

troductionofnew travelmodes, the expansionofnetworks, and the introductionof

novel transportation policies. Different components of transportation systems in-

teract with each other, which results in a series of high-complexity decision prob-

lems. The constant interaction between different components often hinders the

efficiency of centralized control methods due to the inherent computational effi-

ciency, resilience, and information-exchanging capacity. Thus, developing novel

traffic control architecture in a distributed way has become increasingly essential

in modern transportation systems.

In the past decades, an enormous number ofmethods for urban traffic control and

management systems have been developed and implemented all over the world to

alleviate congestion. However, many practical limitations, including accuracy and

computational burden, have hindered the possible success of these optimization

and control methods. Local adaptive strategies that are widely used around the

world are based on heuristic optimization techniques but might compromise effi-

ciency under complex interactions among different subsystems, such as conges-

tion propagation phenomena and queue spillbacks. Other traffic control strategies

use sophisticated global optimization methods, which make their online applica-

tion to large-scale urban networks difficult due to expensive computational costs.

Therefore, it remains a significant challenge to design efficient control strategies

forheterogeneous large-scale transportationnetworks thatdealwithcomplex traf-

fic conditions.

1.1 Major control architectures

In this section, we briefly summarize the major non-centralized control architec-

tures developed in many complex systems, including decentralized control, dis-

tributed control, and hierarchical control. Similar to urban transportation sys-

tems, many systems with a complex multi-scale or so-called hierarchical feature

requires some sophisticated modelling and control framework to optimize sys-

temperformance. Despitemany advantages of controlling such systemswith cen-

tralized control architectures, such as the optimality, the computational burden

and scalability issues become less tractable as the complexity grows. There are

increasing applications of applying multi-scale modelling/control in various do-

mains such as the electrical grid (e.g.,[1]–[4]), biology systems (e.g.,[5]), chemical

industry (e.g.,[6]), and meteorology (e.g., [7], [8]). Despite some recent moder-

ate developments including model-based approaches such as singular perturba-

tion theory (e.g.,[9]–[11]), and data-drive approaches such as dynamic model de-

composition (e.g., [12], [13] ), systematic theories for analysis or computation for
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general system remains limited. Readers are referred to [14] for a comprehensive

review.

1.1.1 Decentralized control

Many complex transportation systems are controlled under decentralized archi-

tectures, in which the input (control variable) and the output (controlled variable)

are assigned to disjoint subsystems, as shown in Figure 1. When the interaction

amongsubsystems isweak, thedesignof local regulators for subsystems is straight-

forward once the decentralized control architecture is defined. However, when

strong interaction is presented among subsystems, the stability and performance

of the decentralized controller would be significantly affected [15].

In view of the great importance of stability and performance under decentralized

control, many efforts have been made in the existing studies. Some of them rely

on the vector Lyapunov functions (e.g., [14]), which is a mathematical tool used to

analyze the stability of dynamical systems. In contrast, others consider sequen-

tial design (e.g., [16]), optimization (e.g., [17]), overlapping decompositions (e.g.,

[18]).

Figure 1: Decentralized control of a two input (u1, u2)–two output (y1, y2) system
(adapted from [14]), where x1 and x2 are the states of subsystems S1 and S2

8 DIT4TraM_D1.1_Benefits_v0.1



1.1.2 Distributed control

Distributed control architectures feature information exchange among local reg-

ulators. The information for exchanging is often concerned with the future pre-

dicted control or locally computed state variables over the considered prediction

horizon. Then any local regulator can predict the interaction effects over the con-

sidered prediction horizon. An example is indicated in Figure 1, in which local reg-

ulators (R1 and R2) communicate with each other about their unilateral decisions.

The performance of a distributed control is determined by the protocols of infor-

mation transmission and synchronization. Generally, two major types of algo-

rithms exist (1) fully connected algorithmswith full information transmission be-

tween all local regulators and (2) partially connected algorithms with information

transmission. Ref. [19] have demonstrated that restricting the information ex-

change among directly interacting subsystems produces a negligible performance

deterioration. Meanwhile, ineachsample time, the informationexchangecanhap-

pen once or multiple times. The former approach is referred to as a noniterative

algorithm, and the latter is often referred to as an iterative algorithm. Further-

more, the objective of each local regulator can be either theminimization of a local

performance index or a global cost function. The former approach is referred to as

independent algorithms (e.g., [20], [21]), and the latter is often referred to as co-

operating algorithms (e.g., [22]). Ref. [22] and [23] have shown that iterative and

independent algorithms drive the system towards a Nash equilibrium, while iter-

ative and cooperating methods approximate some Pareto optimal solutions under

an ideal centralized control structure.

It isworthnoting that distributed control has also beenused for the coordinationof

totally independent systems in order to achieve a common target and to deal with

joint constraints (e.g., [24]).

1.1.3 Hierarchical control

The use of hierarchical control structures, sometimes based on the model predic-

tive control (MPC), is an efficient alternative to the aforementioned decentralized

and distributed control architecture. Under hierarchical control schemes, algo-

rithmsat thehigher level coordinate theactionsof local regulatorsplacedat a lower

level, as illustrated in Figure 3. Roughly speaking, the higher-level coordinator

computes the “prices” (Lagrange multipliers) of some “coherent” constraints in

the global optimization problem given the state, input, and output variables de-

finedby the local regulators, and the local regulators recompute theoptimal trajec-

tories of the state, input, and output variables iteratively [25]. Ref. [26] discussed

coordination schemes fordiscrete-timesystems in the context ofMPC, andapplied

to transportation networks in [27].

9 DIT4TraM_D1.1_Benefits_v0.1



Figure 2: Distributed control of a two input (u1, u2)–two output (y1, y2) system
(adapted from [14]).

Figure 3: Hierarchy control of a two input (u1, u2)–two output (y1, y2) system. Fig-
ure Adapted from [14].
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Other types of hierarchical control schemes appear in hierarchical multilayer sys-

tems, in whichmultiple controllers work at different time scales. Such controllers

can be used in twomajor cases.

In the first case, the overall process under control is characterized by different dy-

namic behaviors, i.e., by slow and fast dynamics. As depicted in Figure 4, one regu-

lator acts at a lower frequency, computing the control action with a long-term ef-

fect on the system,while the other regulator computes the control variables for the

tracking problem at a higher frequency. In other words, the regulator at a higher

layer computes itsdesiredcontrol inputs,whichare the reference signalsof the im-

mediately lower layer. For example, [28] described the systems at any layer with a

linearmodel, where information is passed bottom-up to relax the requirements of

the higher layer when infeasibility occurs at the lower layer.

Figure 4: Control of a system with slow and fast dynamics. Figure Adapted from
[14].

In the second case, optimization and control algorithmsworking at a different rate

compute both the optimal targets and the effective control actions to be applied.

At the higher level of a detailed and accurate system model, real-time optimiza-

tion (RTO) is performed to compute operating conditions regarding a performance

index of economic criterion. At the lower level, a simplified dynamic model of the

system would be adopted (see e.g., [29]). In contrast, [30] considered a simpler

andmore abstractmodel at the higher level and amore accuratemodel at the lower

level. To guarantee that the input and output steady-state references computed by

RTO are feasible, accurate steady-state target optimization must be done. For ex-

ample, [31] proposed an RTO procedure based on a dynamic model of the process.

Ref. [32]mixed the two layers to integratenonlinear steady-state optimization and

linear MPC control.
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1.2 Scope of the deliverable

This reports presents the potential benefits of distributed systems over central-

izedoneswhile designing theproper distributed architectures and information ex-

change requirements for different DiT4Tram subsystems. The work is the first

part of WP1, which aims to develop an inclusive, generic, scalable, and adaptable

paradigm for distributed management of transport systems and services for en-

hancingmobility in urban traffic. The paradigm is centered on cyber-physical sys-

temsusing the IoT and other data sources tomeasure and represent the state of the

system in real time. Smart components are assumed to respond to information in

an adaptive way and are capable of learning.

This report investigates when decentralized systems tend to perform poorly com-

pared to the performance under optimal centralized control, which is often termed

thePrice ofAnarchy. In a stylizedmodel,we showthat it is possible that distributed

systems with suitable information exchange and feedback/incentive systems can

actually perform optimally or close to optimal with the methodologies developed

in DIT4TraM. And neglecting the effect of subsystem interactions and uncertain-

ties due to humans in the loop, can result in an undesirable evolution of the system

state.

1.3 Links with other work packages

Task 1.1 includes conceptsandarchitecturesofpassenger-orienteddistributedcon-

trol (Task 3.1), auctioning schemes for multimodal mobility services (Task 4.2),

cooperative schemes for local bottleneck control (Task 2.4) and finally the traffic

management platforms (WP6). A summary of the connected tasks between this

deliverable and other work packages is provided as follows.

1.4 Structure of the deliverable

In this report, Chapter 2 presents the general conceptualization of decentralization

in transportation and discusses the price of anarchy. Chapter 3 introduces some

distributed control architectures for different applications and modes in trans-

portation systems. Finally, Chapter 4 includes the conclusions.
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Figure 5: Summary of the connected tasks between this deliverable and other
work packages.
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2 Decentralization in transportation

In this chapter, we discuss the benefits of using decentralized, distributed systems

in transportation (Section 2.1), and the price of anarchy under decentralized sys-

tems (Section 2.2). The results in the section are contributed by ETHZ.

2.1 Benefit of distributed systems in

transportation

While a centralized system should, in theory, converge to the optimal solution, for

much larger networks a centralized optimization technique is an NP-hard prob-

lem [33]. Using decentralized systems in transportation can offer benefits in terms

of scalability, resource efficiency, and privacy preservation over a centralized sys-

tem. This approach is also inherently suited for managing and modeling trans-

portation systems [34], and lends itselfwell to data- and simulation-drivenmeth-

ods such as machine learning.

In the context of traffic signal control, distributed systems allow for a scalable de-

sign of systems by using traffic control systems that focus on smaller areas. This

also drastically reduces the necessary state variable representation as opposed to

simultaneous (centralized) control ofmultiple intersections, allowing for the reuse

of these systems with minor tweaks and to be deployed to other locations.

Distributed systems also spread the workload of control across multiple subsys-

tems, compared to a centralized system wherein a single entity is responsible for

controlling and managing the vast systems involved in smart city systems. Dis-

tributed systems can help to ensure that transportation systems continue to oper-

ate, even in the event of a failure or outage. However, there remains the need for

some level of coordination and information sharing between local systems [35] to

ensure that each controller’s actions do not conflict or interfere with other neigh-

boring intersections [36].

2.1.1 Resilience under disruptions, accidents, or disasters

Resilience, or a system’s ability towithstand, respond to, and recover fromdisrup-

tions [37], is often evaluated through resilience curves. These curves show the evo-

lution of a performance metric that maps system states to a scalar value through-

out a scenario [38]. This provides insight into how a system responds to disrup-

tions, suchas the rateofperformancedegradationor recovery, thedepthof impact,

whether the system can restore its performance once the disruption is removed,

and the speed at which this occurs.

14 DIT4TraM_D1.1_Benefits_v0.1



In transportationsystems, disruptionscan take the formof suddenchanges in traf-

fic volume (demand-side) or changes in network topology (supply-side). In ur-

ban traffic systems, these two types of disruptions are strongly interlinked [39].

Transportation systems are vulnerable to various disruptions, such as natural dis-

asters (e.g., earthquakes, floods [40]) or roadworks or accidents. Such disruptions

hamper the performance of traffic control systems by either changing the traffic

conditions to ones that the control algorithms are unsuited for, or in the case of

centralized systems, having a single point of failure for an entire traffic network.

To achieve resilience, a decentralized system replaces the centralized controller

with independent controllersdistributed throughout thesystem. As individual con-

trollers focus on their own local regions, this can limit the disruptive effects of fail-

ures on a global scale.

In recent years, machine learning approaches have gained popularity in the re-

search of traffic signal control. Deep Reinforcement Learning approaches in par-

ticular have found their way into traffic control literature [41]–[45], with a com-

mon approach of employing multi-agent reinforcement learning (MARL) as a de-

centralized, distributed control paradigm. Oftentimes, these research works re-

port improvements on the order of 10–15% improvement over non-reinforcement

learning methods. We found however that a thorough treatment of such algo-

rithms under disruptions was lacking; furthermore, there is a lack of a common

performance baseline that can be used to compare results by different research

groups. Whereas popular commercial traffic software (e.g., AIMSUN [46], VIS-

SIM [47]) are also used by cities to develop and calibrate models, these are sel-

domused inmost of the deep reinforcement learning literature[48]. Instead,much

work on deep reinforcement learning is done on open source and extensible soft-

ware such as SUMO [49] and CityFlow [50]. However, this means that researchers

areunable touse traditional andestablishedmethods in trafficsignal control (which

are readily available in AIMSUN and VISSIM) as a tradeoff for more computation-

ally efficient training of models.

Thus it is necessary for an extended evaluation framework for such algorithms to

determine robustness in varying traffic conditions, such as disruptions in vari-

ous parts of a traffic network due to accidents and/or disasters. Secondly, a com-

mon and easy-to-implement performance baseline must be established to make

for fair, comparable, and interpretable reporting of algorithm performance across

different groups. These are related to Task 1.3, and in the context of control algo-

rithms, preliminary results show that indeed traffic control algorithms are sensi-

tive to disruptions, which cause significant deviation from the idealized scenarios

algorithms were designed/trained for (Figure 6).
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Figure 6: Results for the average travel times in some benchmark simulation ex-
periments. Error bars indicate standard deviations of 100 disrupted scenarios
simulated for each disruption level. Random and Cyclical are naive baselines,
while Demand is a simple implementation of actuated control. Analytic+, and
Presslight are deep reinforcement learning methods, while GuidedLight uses a
self-organizing algorithm for traffic light control. Lower values are better. Figure
reproduced from Ref. [51].

2.1.2 Privacy protection

The rise in the ubiquity of sensors, detectors, and connected devices raised con-

cernsabout the safetyof storingdata in centralized systems [52]. Intelligent trans-

portation systems (ITS) integrate data from various sensors (e.g., loop detectors,

connected autonomous vehicles, traffic cameras, and other smart sensors) to sup-

port multi-fold functions such as dynamic information services, traffic control,

and vehicle management [53]. While data collected by traditional sensing tech-

niques such as loop detectors use anonymized aggregate measures, other smart

sensors may be storing and sharing raw data that may contain some identifiable

information [54]. Decentralization can serve as a first step of protection against

possible attempts of unauthorized access and misuse (by hackers, organizations,

or even governments) of these data.

Decentralization reduces the amount of data controlled by a system at any given

time, but this does not necessarily need to come at the cost of model performance.

Federated learning [55] emerged in2016asamachine-learningsettingwheremany

agents collaboratively train models under the guidance of a central server. While

traininghas somedegreeof centralization, data iskeptdecentralized, and theagents

can still function independently of the central server. Thus, federated Learning

placesa strongemphasisonbuildingeffectivemodels fromuserdata,without com-

promising on the security and ownership of data from individuals [56].
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2.2 The price of anarchy under decentralized

control

One form of traffic control is to provide users with individual-level routing guid-

ance, a service that drivers can avail of through apps likeGoogleMaps, AppleMaps,

and Waze, among others. As early as 1952, Wardrop suggested optimal ways for a

central authority to distribute vehicles using a roadnetwork to achieve a systemop-

timum (SO) [57]. Wardrop claimed that the lack of coordination led to inefficient

transportation systems; this so-called notion of “anarchy” later developed into

the concept of Price of Anarchy (PoA).

The PoA quantifies the inefficiency in decentralized systems, where agents act in-

dependently, compared to a centralized approach [58]. Specifically, it measures

the ratio of the worst Nash Equilibrium [59] and the best possible coordinated so-

lution. Networks with high PoAs are assumed to require centralized controls to

achieve the best possible coordinated solutions.

While the navigation service providers are to an extent central points for getting

guidance on route choices, their approach to route assignment is effectively a black

box. This, together with the number of big players in the routing app market, has

also resulted in routing apps worsening congestion [60]–[62].

While studies onPoA for simple, theoretical systems (e.g., BraessParadox [63]) ex-

ist, determining thePoA for realnetworksanalytically is difficult. More commonly,

studies of the PoA are also restricted to using analytical cost functions (linear or

polynomial) to estimate travel times on roads, however, such approaches fail to

account for realistic driving behavior and queue spillback effects [64]. Ref. [65]

uses a data-driven approach to estimate PoA by assuming real traffic dynamics

correspond to the Nash equilibrium (also known as a user equilibrium or Wardrop

equilibrium [66]). Other studies tackled reducing the PoA in transportation sys-

tems through the removal of roads [67], [68], or delegating routing decisions to a

network of cooperating connected automated vehicles [69].

2.3 Braess Paradox with decentralized, learning

agents

Routing and congestion games have been a very popularmodel used to understand

network use [70], [71]. These games have important analogies to traffic on roads,

and packets traveling over the internet, and have received widespread attention

when seeking to optimize the use of such networks.

The Braess Paradox [63] (see Figure 7) is an example of a system with a counter-
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Figure 7: Illustration of the initial network (left), and the augmented network (right)
in the Braess Paradox. Agents start in the “S” state and pick a path to reach state
“t”. The numbers represent the cost of traveling over a link. A cost of x is the
ratio of agents that choose that link. Rational and fully-informed agents all pick
the crossing link in the augmented network, which leads to high congestion and
the worst possible social welfare. (left) Two actions are possible in the original
network: up takes the upper edges, and down takes the lower edges. (right) The
augmented network allows for an additional action cross is possible, which takes
the first upper edge, crosses to the lower section at the middle, and finishes on
the second lower edge.

intuitive property in that the addition of a road shifts the NE andworsens the con-

gestion in the network. Conversely, the reverse holds: road removals can reduce

congestion in the network. How can this be so? Braess Paradox is not a true para-

dox, because there is a clear explanation for the phenomenon that does not break

any logical rules. Nonetheless, it characterizes a particular situation where inde-

pendent and self-interested agents suffer without coordination.

This section demonstrates the benefits of a distributed approach by considering

noise in the Braess Paradox (Figure 7) while retaining complete decentralization

in the system. We achieve this by building on three different sets of agents that

learn to play the Braess routing game in three ways: as non-learning and rational

agents, irrational agents, and irrational agents that learn.

2.3.1 Non-learning agents

In theBraess paradox,we consider an initial (Figure 7a) andaugmented (Figure 7b)

network, where agents start from node “S” and travel to node “T”. Each of the

edges has associated costs (i.e., travel time) which are a function of the ratio of

agents choosing an edge. In the initial network, equilibrium is reachedwhen xup =

xdown = 0.5, with a total travel time of T = 1 + xup = 1.5 for the upper path, and

T = xdown + 1 = 1.5 for the lower path.

The addition of the crossing path in the augmented network breaks this equilib-

rium for the system. An agent originally in the upper path, acting entirely ratio-

nally, candecide to cross andhave a travel timeofTsingle_crosser ≈ xup+xdown ≈ 1,
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which is faster than the travel timeof 1.5units in the initialnetwork. This then leads

toadominoeffect,where all agentson theupperpathdecide to cross, andall agents

on the lower path switch to the upper path and then cross. The Nash equilibrium

in this system is the cost of the crossing path: TNash = xup + xdown = 1 + 1 = 2.

Thus, for the Braess paradox, we can compute the price of anarchy as

POA =
TNash

Toptimal
(1)

=
2

1.5
. (2)

2.3.2 Irrational ε-greedy agents on the Braess network

Braess Paradox is a routing game with a high Price of Anarchy, where decisions of

rational agents converge to a Nash Equilibrium with the worst possible outcome.

However, the Braess paradox outcome assumes that agents are fully-rational and

have perfect information. Fully-rational agents have set preferences (e.g., mini-

mizing travel time) andmake decisions to satisfy these preferences (e.g., choosing

roads that have minimal travel time. Perfectly-informed agents know the out-

comes of their actions, and additionally of all other agents present in the system.

If we relax the fully-rational and perfectly-informed assumptions on agents by

adding noise. For agents that use an ε-greedy strategy,

ε-greedy route choice =

{
best believed route, w.p. 1− ε

random route, w.p. ε,
(3)

results in different average travel times, depending on what agents believe to be

the best possible routes. We found that for the crossing case, the travel time can be

expressed as

T̄ (ε) =
( ε
3

)(
2− ε

3

)
+

(
1− 2ε

3

)(
2− 2ε

3

)
+

( ε
3

)(
2− ε

3

)
(4)

= 2− 2
ε

3
+

2ε2

9
(5)

For values of ε ∈ [0, 1], the function T̄ (ε) is monotonically decreasing. Thus, for

irrational agents that do not learn, the best travel time and system optimum is

achieved for a value of ε = 1, or when agents choose completely at random.

2.3.3 Learning agents

Amore interesting case is to use the ε-greedy agents previously described, and al-

low them to learn open-ended. To model agents’ beliefs, we use Q-learning and

model the process of agents choosing paths on the Braess network as aMarkov De-
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cision Process (MDP). An MDP is a tuple of (A,S, T, R) where S is the set of states,
A is a set of actions, T : S × A× S → [0, 1] is a transition function mapping state-

action-state tuples to probabilities, andR : S×A → R is the reward functionmap-

ping state-action pairs to rewards. The goal of maximizing the cumulative reward

function allows an agent to learn the appropriate action a to take, given a certain

state s [72].

Q-learning [73] uses a function Q : S × A → R to map state and action pairs to

the reward space. This equation estimates the quality of the current state from the

perspective of the expected rewards for possible future states. The Q-values are

then iteratively updated using the equation

Q̂(s, a)← (1− l)Q̂(s, a) + l

[
r + γmax

a′
Q̂
(
s′, a′

)]
, (6)

where l is a learning rate. The discount factor γ controls the importance of im-

mediate compared to future rewards. Finally, the agent makes use of a policy π to

choose actions based on the currently observed states and beliefs about the system.

It is common to see the ε-greedy policy used to select actions inQ-learning:

π(s) =

{
argmaxaQ(s, a), w.p. 1− ε

U [A|s], w.p. ε,
(7)

where U [A|s] is a uniform distribution over the action set permissible at state s.

We then simulatedN = 100 agents, assuming all agents have the same set of pa-

rameters (ε, l, γ) and can perform one of three actions: A = {up, down, cross} ≡
{u, d, c}. For simplicity, the agents do not take in state information, and we set

γ = 0. The agents prefer minimum travel times, so the rewards are set to the neg-

ative of travel times in the Braess game.

Using ε-greedy Q-learning, we show uncoordinated agents’ collective behavior

lowers the Price of Anarchy of the Braess Paradox by increasing their exploration

rates ε (Figure 8 [74]). While the initialization scheme of beliefs matters in the

regime of ε < 0.11, we find that learning agents eventually result in the price of

anarchy values corresponding to the average travel times in the case of irrational

agents. This result draws a conceptual link between irrational behavior and explo-

ration during learning. Since time travelled is the metric of interest, we assume

that a rational agent learns to pick the route they believe minimizes travel time.

Conversely, an irrational agentmaynot alwayspick the route thatminimizes travel

time. The ε value thus parametrizes the irrationality of an agent, where we equate

irrational behavior with random behavior. However, we also extend the notion of

irrationality to deviations fromwhatwould be considered rational behavior, which

could be caused by external factors. These deviations could be due to errors in the

measurements of travel times such that agents do not have perfect information, or
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Figure 8: Plot of the Price of Anarchy (PoA) as a function of randomness. The
irrational agents’ curve shows how the best PoA is achieved for ε = 1, where
drivers pick fully randomly. The colored curves are empirical from experiments.
A mismatch between the irrational agents’ curve and the experimental curves is
visible in the range ε ∈ [0, 0.11], while there is a close resemblance in the range
ε ∈ [0.11, 1].

constraints unrelated to network structure that require individuals to pick routes

with alternate criteria. There are many possible explanations for seemingly ran-

dom behavior, which may not be irrational. Our simulations attempt to capture

these deviations with randomness, and it appears that randomness, or irrational

behavior, is beneficial in this setting. This benefit is accentuated by the Braess

Paradox, where fully-rational behavior is expected to produce the worst possible

outcome.

Viewing irrational behavior as beneficial for a system is somewhat in contrast to

traditional economic theory, where all the benefits of efficient markets and equi-

libriumdynamics result fromassumptionsof fully-rational agentswithperfect in-

formation. This paper thus contributes to an important direction of research that

investigates the beneficial impacts that seemingly irrational behaviormay have on

the dynamics of systems with many agents.
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3 Designingand implementingdistributed

systems in transportation

Motivated by the benefits of distributed approaches,wehavedevelopeddistributed

control architecture for different applications and modes in transportation sys-

tems. Multiple passenger-oriented distributed control strategies for large-scale

urban systems are presented in Sections 3.1–3.3. In particular, Section 3.1 presents

both distributed and hierarchical approaches for traffic signal control in general.

Section 3.2 focuses on prioritizing public transportation systems by designing dy-

namicbus lanes,whileSection3.3 is concernedwith the repositioningofon-demand

transport. Section 3.4 presents auctioning schemes for multimodal mobility ser-

vices, and Section 3.5 illustrates cooperative schemes for local bottleneck control.

3.1 Traffic signal control architectures

3.1.1 Distributed approaches

This section contains two different types of distributed traffic signal control ap-

proaches based onmax pressure control and reinforcement learning, respectively.

Max pressure control is designed to maximize the network throughput with nice

theoretical foundationbut relyingonsimplifiedassumptions regarding trafficcon-

dition, which are not necessarymet in the real world. In contrast, the reinforcem-

net learning approach provides a data-driven counterpart. This section provides

a preliminary conceptualization of the above two control methods. More details

about the integration of the control architecture in a network implementation will

be provided in Deliverable 3.1.

A. Max pressure control

MaxPressure (MP) is a state-of-the-artdistributed feedback-basedcontrollerpro-

posed for isolated traffic intersections. Its function is based on a simple algorithm

that adapts the right-of-way assignment between competing traffic signal phases

in real-time, according to feedback information of the forming queues around the

intersection (upstream and downstream), in a periodic cyclic process. In the core

of MP lies a pressure component, which quantifies the weighted queue difference

betweenupstreamanddownstream links of every phase in real-time. Thepressure

reflects a need for green time in each phase, by taking into consideration the ca-

pacity of the relative approaches in terms of flowand the existing queues upstream

and downstream in relation to the capacity of the link. Based on the pressure val-

ues, a subsequent action is taken,whichmaybe a phase activation of themaximum
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pressure phase or proportionate green time allocation between phases during the

following control time slot. The formula for pressure calculation of a specific in-

coming link of the node for MP control can be similar to the following:

pz(kc) =

xz(kc)
cz

−
∑

w∈On

βz,wxw(kc)

cw

Sz, z ∈ In (8)

In eq. 8, the pressure pz(kc) of the incoming link z for the control segment kc is cal-

culated based on the queue length xz of link z, the queue lengths of all downstream

links w, xw, the storage capacity ci of each referenced link i, the saturation flow Sz

of link z and the turn ratiosβz,w between z andall downstream linksw, whichdivide

the queue of z to the intended next link in their path. The pressure of each phase is

based on the pressure of all incoming links that take ROW during the phase.

Initially proposed for packet scheduling in wireless communication networks by

[75], MP was formulated as a signalized intersection controller through the works

of [76]–[78] andwas theoretically provenby [76] to stabilize queues andmaximize

network throughput for a controllable demand, based on some specific assump-

tions, such as point-queues with unlimited capacity and separate queues for all

approaches. The theoretical stability proof, despite the constraining assumptions

on which it was based, together with the element of independence from any de-

mand knowledge, and the decentralized and scalable layout, render MP a promis-

ing control strategy, especially for signalized networks facing unstable, excessive,

or dynamic rapidly-changing congestion. Several research studies demonstrate

the benefits of MP control application in specific case studies, mostly in terms of

throughput and travel time improvement. Refs. [79] and [80] introduced normal-

ized queues in the pressure calculation, thus implicitly taking into account link size

and spill-back probability, while taking into account queue capacity, which was

considered infinite in the initial MP of [76]. Ref. [81] presented anMP versionwith

unknown turn ratios but existing loop detectors for all directions at the exit line.

Ref. [82] and [83] proposed extended MP versions able to address bounded queue

length estimation errors and incorporate online turn ratio estimation, as well as

dynamically update control settings over space according to demand. Ref. [84]

applied a strict cyclic phase policy, in contrast to phase activation based on pres-

sure which can induce long waiting time for some drivers, and provided stability

proof, which applied also for non-biased turn ratios. Ref. [85] integrated rerout-

ing of vehicles in MP algorithms. Ref. [86] proposed a position-weighted back

pressure control, on the basis of macroscopic traffic flow theory, and integrated

spatial distribution of vehicle queues in pressure calculation. Ref. [87] proposed

a delay-based version of the MP controller in order to increase equity of waiting

timeamongdrivers around the intersection. In [88], pressure is calculatedbyusing

travel time estimation instead of queue length, in an attempt of relaxing the need

for expensive queue measuring equipment, and findings are supported by simu-
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lation and real field experiments. Ref. [89] proposed an alternative signal cycle

structure with maximum cycle length.

On theother side, even thoughmanystudiesprovide stability and throughputmax-

imizationproofsof variousMPvariants, theyusually refer tomoderate and feasible

demand sets, whileMP performance in highly congested networks is questionable.

Unstable behavior in such conditions can be attributed to the latency of local con-

trollers, in general, in reacting to the rapid forming of congestion, given the lack of

knowledge about traffic conditions upstream and out of the proximity of the con-

trolled intersection. In the case of MP, there is little area for improvement if most

(or all) controlled queues are saturated, in which case control tends to approxi-

mate the fixed-time plan. However, MP impact may still be significant even in

over-saturated networks if they are combined with other congestion-preventing

control strategies, e.g., in a hierarchical framework.

B. Reinforcement learning approaches

For large-scale traffic signal coordination, centralized control models may have

some problems with the computational dimension, which increases exponentially

with the number of signals and control periods. Although these models are effi-

cient for offline signal control based on daily traffic patterns, their computation

time is not appropriate for real-time applications [90]. Reinforcement learning

(RL) is a type of machine learning that involves training agents to make decisions

in complex, uncertain environments. In the context of traffic signal control, rein-

forcement learning algorithms can be used to optimize the timing or order of traf-

fic signals in order to reduce congestion and improve the flowof traffic. Ideally, RL

learns fromexperience anddata to adapt to changing trafficpatterns to achieve the

goal of maximizing an objective function. Although there still exist some imple-

mentation challenges for RL, such as the policy immigration from the simulation

platform to the real environment, RP provides an alternative way of data-driven

traffic control with reducedmodeling effort.

In recent years, further developments inMLmethods have given rise to reinforce-

ment learning (RL) approaches [41]–[45]. The RL methods can reduce the com-

plexity offinding the optimal solution. However, they are not free from thedimen-

sionality problem of the state-action space with centralized formulations. Thus,

decentralized control methods like Multi-Agent Reinforcement Learning (MARL)

control have been commonly used to overcome this shortcoming [91]. MARL di-

vides the network into several subsystems, considered as agents. When consid-

ering large-scale real-time signal control, the multi-agent/decentralized frame-

workandDeepReinforcementLearning (DRL)are systematically integrated to sim-

plify the state-action space of agents by approximating the value functionwithAr-

tificial Neural Networks (ANNs) [92], [93].
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UGE contributes by proposing a deep MARL framework for traffic signal control,

considering car traffic and bus transit simultaneously. Under this framework, the

traffic signal control process for each intersection is represented by an agent that

dynamically triggers one of the predefined phases. The timing plan of the traffic

signal needs to be evaluated and updated after each decision taken by the agent

controlling that traffic signal. This interaction between the traffic light and traf-

fic environment follows Markov Decision Processes (MDPs). In MDPs, the agent

estimates the value of each action in each state and selects the optimal one, which

exactly describes the signal controller’s action. Each agent acts in a shared envi-

ronment to achieve a common individual goal. Since car traffic and bus transit are

considered simultaneously here, the optimal signal timing plan should reduce the

overall car traffic delay and the variance of bus headways in the long term. Con-

nections among agents exist for better coordination.

Figure 9: Multi-agent reinforcement learning framework for traffic network.

Tobuild the trafficsignal control approach into theMARL framework, it is essential

to determine the critical elements (shown in Figure 9). The environment consists

of intersections, the road network, car traffic flow, and bus transit. Each signal-

ized intersection is regarded as an agent. The agent’s action involves allocating the

green to one of the predefined phases for the next decision step. In this framework,

the state observations consist of real-time traffic information, bus headways, and

the past actions of neighboring agents (i.e., neighboring signalized intersections).

The same variables are used to define the reward function to enhance traffic effi-

ciency at the intersection and to homogenize (keep constant) bus headways.
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Compared to the centralized RL algorithm, the state-action space of MARL agents

is reduced significantly, leading to better convergence performance for training

models. According to several numerical tests, the MARL algorithm decreases the

average queue length and the standard deviation of bus headway by 13.55% and

27.16%, respectively, compared to the best performance of the centralized con-

trol method and model-based adaptive methods. Both scalability and portability

are demonstrated by transferring trained models to similar intersection configu-

rations. Details about the proposed framework, agent design, and the test results

are found in the deliverable of Task 3.1, as well as [92], [93].
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Figure 10: Average travel time of various traffic light control methods relative to
the average travel time for fixed time schedules for two synthetic (2x2 and 4x4
grid) and one real-world (Hangzhou) scenarios. Lower values are better.

While deep RL approaches in literature boast impressive performance improve-

ments, these benefits are underpinned by deep RL’s tendency to overfit training

scenarios [94], [95], and the large amount of computational power required to

train suchmodels.

ETHZ contributes by examining state-of-the-art techniques to reduce the train-

ing times in transportation networks in practice. In previous works of Korecki and

Helbing, they combined these RL approaches with self-organizing control algo-

rithms [96] to create GuidedLight, a hybrid approach that allows RL to learn from

insightsof ananalytically-derivedapproach [44], [51]. Thishybridapproachdemon-

strated by GuidedLight showed the capability of RL to learn traffic signal control

schemes that reduce travel times of vehicles in the network (see Figure 10).
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Oneof thechallenges facedbyRLapproaches is thecomputationally intensive train-

ing times, which can be very long when dealing with much larger networks. While

thedistributed,multi-agentdesigncanmake trainingmoresampleefficient, learn-

ing from the highly varied traffic flows experienced by the many intersections in

large networks is still slow. However, by employing tricks such as pre-training on

a smaller, but richer environment for experiencing different traffic states, Korecki

andHelbingwere evenable to reduce training timesneeded for theseRLalgorithms

without sacrificing performance inmanaging network travel times [45]. These al-

gorithms are currently being developed for Task 1.3.

3.1.2 Hierarchical approaches

This sectionprovides abrief conceptualizationof ahierarchical control schemede-

veloped by EPFL, combining centralized perimeter control with distributed Max

Pressure control. A combination of upper and lower layer schemes in highly con-

gested environments helps the system to stabilize in more favorable and higher

mobility states.

Additionally,we introduce the Jam-treealgorithm, developedbyBIU, as apotential

algorithm for identifying bottleneck areas and pinpointing key intersections for

MPcontrol.Adetail introductionabout the integrationof the control architecture in

a network implementationwill be provided inDeliverables 3.1 and 3.2, respectively.

Max pressure and perimeter control

Developingmulti-layer controlpolicies comprisingboth local andaggregatedstrate-

gies, seem an intuitive way of achieving network control with multiple objectives.

Different layers may have different control mechanisms, act on different scales

(local node/link or network) and take decisions that can benefit multiple layers.

A two-layer hierarchical adaptive signal control framework for a network-wide

application, combining centralized perimeter control (PC) with distributed Max

Pressure control (see Section 3.1.1) is proposed here. The motivation for such a

control system lies in the potential collaborative effect of these controllers, which

relates to their characteristics. Among centralized approaches, perimeter control

(PC) based on the concept of the Macroscopic Fundamental Diagram (MFD), has

beeneffective in improving trafficperformanceof singleormultipleneighborhood-

sized, homogeneously congested regions. It consists of regulating inter-regional

incomingandoutgoingflowsbyadjusting thegreen light durationof the respective

approaches at the intersections located on the network perimeter or at the bound-

aries between regions. The objective is to maintain maximum travel production

within the protected regions, according to the specificMFD law that associates re-

gional vehicle accumulation and travel production. Perimeter control has been in-

tensively studied on the basis ofMFDmodeling, and a large number ofMFD-based
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PC schemes have been proposed, analyzed, and evaluated in recent years, utiliz-

ing different modeling and control methods and focusing on different control as-

pects. As a reference, Proportional-Integral (PI) feedback regulator for single- and

multi-regional networks is implemented in [97], [98], [99], [100], optimalMPC is

implemented in [101], [102], [103] with boundary queue consideration, while route

guidance is incorporated in PC schemes in [104], [105].

Combining PC strategy with MP local regulators is expected to benefit network-

wide signal control as follows. PC is shown effective in preventing high-demand

regions from reaching very congested states. However, PC is more effective when

traffic ishomogeneouslydistributed in thenetwork. On theother side,MP isknown

to be effectivemainly in low tomoderate congestion by increasing throughput and

decreasingqueuevariancearound intersections, thus increasing traffichomogene-

ity locally. However, its performance is questionable in oversaturated conditions,

where it may approximate fixed-time control. Combining both controllers in a

two-layer framework can benefit the global performance of the network since MP

canhelp inmaintaininghomogeneitywhile PC canhelp avoid oversaturated states.

A question that arises regarding the architecture of the two-layer system refers to

the location of the nodes whereMax Pressure regulators should be installed across

the network. The effects that MPmight have on the PC control design parameters

(such as critical accumulation of maximum network throughput) is also a topic to

be investigated.

In detail, a schematic representationof theproposed two-layer controller is shown

in Figure 11. In the upper layer, perimeter control is applied in an aggregated scale

between a set of homogeneously congested regions and is activated when one or

several regions reach a minimum congestion level. Gating can be applied on the

external perimeter as well as on the boundaries between regions. At the end of

every control cycle, the controller, based on inputs of aggregated regional vehicle

accumulation, specifies the target inter-regional exchange flows and the external

inflows for the next cycle, which are translated into the respective inter-regional

average green times between every pair of adjacent regions and from the external

perimeter to the interior of each region. The average green times are then trans-

lated to exact green times per approach of every PC controlled intersection, located

on the regions’ boundaries. Only a set of selected nodes is used for the boundary

and perimeter control. The queues of the controlled nodes are used as weights for

the green time distribution between nodes that belong to the same inter-regional

approach. Perimeter control requires proper clustering of the network into ho-

mogeneous regions, where low-scatter MFDs can be identified. A simple way to

implement PC is through a Proportional-Integral (PI) regulator, with a setpoint of

target accumulations that consists of the critical accumulation of each region, as

indicated by the respective MFD.

In the lower layer, distributed control based on the Max Pressure regulator is ap-
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plied to a set of selected intersections, in the interior of the regions. This set can

contain either all or a fraction of signalized intersections of the region, with the

exception of those used for PC (if PC is applied in parallel). While many theoretical

studies claim that MP should be applied to all intersections for network control,

this practice leads to a significant implementation and maintenance cost related

to themeasuring equipment that needs to be installed on every road upstream and

downstream of the intersection. It seems however that some nodes are more crit-

ical than others with respect to MP control and can make a significant difference

in the global network performance if they get under MP control. Effective identi-

fication of the most critical locations for MP control installation can be based on

various traffic information of the actual state and is on its own a topic to inves-

tigate. A selection method is proposed for identifying the most critical nodes for

MP in combination with PC. The method is based on information about the mean

and variance of queue lengths of the links around the controlled nodes, as well as

on the spillback activity of any of the adjacent links. These three metrics are de-

fined and calculated for every node based on peak-time traffic information. Then,

they are linearly combined to create a metric expressing the overall importance of

the node for MP control, by which nodes are ranked and selection is made starting

from those with higher importance.
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MP controllers do not communicate with each other or with any central control

unit but operate independently based on queue measurements directly upstream

and downstream of the controlled intersections, by adjusting green times of the

approaches accordingly, at the end of every control cycle. The control layers do not

exchange information directly, however, their combined effect is indirectly con-

sidered by both controllers through the real-time traffic measurements that both

layers receive as inputs. The described architecture of the two-layer framework is

expected to be flexible in adjusting to different traffic conditions and congestion

states. For instance, in cases of lower demand, regional accumulation would be

lower than the threshold that would activate PC, so the MP controller would ap-

ply on its own to improve homogeneity locally and increase throughput in cases of

local gridlocks without any hindrance. In cases of high demand, when PC is acti-

vated, transfer flows are controlled, keeping the congestion level close to critical,

which allows MP to continue functioning without loss in performance due to sat-

uration, while regional service capacity remains high. The queues formed around

the boundaries and outside the external perimeter of the network due to gating are

faster discharged with the help of MP.

Details about the function and parameters of the two-layer control framework as

well as regarding the critical node selection strategy can be found inDeliverable 3.1.

Jam-tree approach

In addition to the critical node selection strategy being developed for Deliverable

3.1, we also introduce the Jam-tree approach. The Jam-tree approach was origi-

nally designed as a tool to study the dynamics and formation of congestion in dif-

ferent cities, but can also be used to identify key bottleneck areas in real time. More

details about the integration of the jam-tree approach in a network implementa-

tion will be provided in Deliverable 3.2, respectively.

To identify traffic bottlenecks, we converted datasets of urban areas to dynamic,

directed trafficnetworkswhere eachnode represents a junction, and each link rep-

resents a street segment between two junctions. The direction of the links repre-

sents the allowed traffic on that street segment, and the weight of the link at time

segment t, W (t), represents the temporal traffic relative speed, i.e., the ratio be-

tween the temporal speed and the speed at its maximal flow. We defined a street

segment as currently congested ifW (t) < 1. Next, we construct for a given time t

a new dynamic weighted network, whereW ′(t) is the sum ofW (t) of all times each

link has been considered as congested up to time t (see Figure 12) and used the fol-

lowing process to create tree-shaped clusters of congested links:

1. At each time t, we identify the links with the highest weight W ′ (i.e., those

that have been congested for the longest time) and define them as potential

trunks of a jam-tree (JT). Next, we identify the branches of the JT by adding
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links or other trunks, connected to each trunk, withW ′≤W ′
trunk. By doing so,

we identify links that became congested no more than a predefined parame-

ter θ—in this case defined as 2 measurement units—after the trunk or after

a neighboring road. The value of θ is only used to limit the connections of

new branches to a JT; in other words, it reflects the maximal duration that a

congested street segment is considered as the cause for the congestion in its

upstream section. High values of θ allow a street segment to connect to its

downstream section longer times after its downstream section became con-

gested. This leads to larger JTs on one hand but reduces the probability of

causality on the other. In other words, in our analysis, if a street segment be-

came congested no more than 30 minutes after its trunk we can assume that

the traffic load in these links resulted from the trunk of the JT. To test this

assumption, we compared the result of the analyses of the real data to those

of a controlled randommodel. The results of this comparison present a qual-

itative difference, which strengthens our assumption of causality. By using

this definition, we consider the street segment that acts as the trunk as a bot-

tleneck of the JT. Note, that we chose θ = 2 as our datasets had 15 minutes

time-intervals and thus, our analysis considered the macro-dynamics of ur-

ban traffic. Not that for other datasets with higher resolution of shorter time

intervals, lower values of θ have been used.

2. We continue assigning connected links to these JTs in the same iterative pro-

cessuntil nomoreconnected links (roads)withW ′≤θ for the last addedbranches

are found.

3. We start again at stage 1, but nowwe look for the link with the highest weight

W ′, that has not been assigned to an existing (JT).

4. We continue this process until there are nomore congested links that are not

assigned to any JTs.

The resulting clusters represent JTs and the time each of their links was loaded.

Examples of JTs are shown in Figure 12.

Stage #1: Economic Cost—Prioritization Strategy

While some traffic congestions can last many hours, their economic cost might be

marginal if, for example, they occur in small peripheral streets. To assign prior-

itization for traffic congestions, we measure their cost in vehicle hours (VH). We

introduce the four formulas to calculate the cost at different times of the JTs and

the links they include.

The cost of a link Cij(t) is calculated for every measurement unit—15 minutes in

this case—relative to its costUf , free-flow speed. Thismeasurement unit demon-

strates the meso-dynamics of urban traffic. Indeed, using shorter periods of time

will allow for following the micro-dynamics of urban traffic. This cost represents

the time it takes to cross a road (link) in comparison to the time it takes to cross
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Figure 12: Clusters of Jam Trees (JT). The numbers represent the time (in 15 min-
utes units) each street segment was congested. (A) All the colored streets are
part of one JT where the red street represents its trunk: its duration (12 successive
measurements that represent 3 hours) is the longest, which indicates it was the
first street with traffic load in this JT. (B) Two JTs (represented by red and blue
colors). The red JT does not include the street that has been loaded for 2 mea-
surements, as the time gap between this street and its adjacent one is larger than
the pre-defined threshold θ (see the upper green circle). The blue JT cannot be
considered as part of the red JT, as the duration of its trunk is longer than that of
its adjacent street in the red JT (see the lower green circle). When a bottleneck
is released but the JT that follows it remains congested, the next street segment
with the longest duration becomes the new trunk of the JT and carries the cost
of the remaining branches of the JT.
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this road in its maximal flow (calculated for each link), multiplied by the number

of drivers who crossed the endpoint of this link at a specific time:

Cij(t) = distij ∗

 1

uij(t)
− 1

uqmaxij

 ∗ qij(t) ∗ lij60
T

(9)

Here, distij is the length of the link in km, qij(t) is the current flow on the link,

uij(t) is the current speed on the link, uqoij is the speed when the flow is optimal,

T represents a measurement unit which corresponds to 15minutes (in the present

case) and lij is the number of lanes in the link (i.e., the number of lanes in each

street segment of the JT).

Themomentary cost of a JT represents the sum of the costs (Equation 10) of all the

links that are included in it at a specific measured time:

MomentaryCost(t)JT =
n∑
bij

(Cij(t)) . (10)

And the cumulative cost of a JT is the cost of the JT from themoment it was created

until the time (t), which is calculated as:

CumulativeCost(t)JT =
∑
bij

 t∑
tI≤t

cij (tI)

 . (11)

Here, bij is a branch (i.e., link) in the JT, and tI is the time (in units of 15 minutes)

that each branch bij was a part of the JT.

Lastly, to follow the spatio-temporal dynamics of the system, we combine all the

different JTs that had the same street as their trunk throughout the entire exam-

ined week and refer to them as Repetitive Jam Trees (RJT). The cumulative cost of

the RJTs represents the sum of all the JTs they contain at a specific time window

(e.g., day or week):

TotalCostRJT =
∑

TotalCostJT . (12)

Equations (10)–(12) allow calculatingnot only the cost of each JT from themoment

it became congested until it was dissolved but also its dynamics and temporal costs

at different times (see Figure 13).

Stage #2: Extended Definition of Jam Trees

We extend the definition of a jam-tree to includemore general cases where several

jam trees may overlap and share the same trunk or branches. This is highly sig-
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Figure 13: Graphical representation of the JTs: snapshots of JTs in (A, B) London
center and (C, D) Tel Aviv and the CumulativeCost(t)JT of the entire conges-
tion, associated with each bottleneck, during morning rush hours (top row) and
evening (bottom row). While some traffic congestions appear in both morning
and afternoon rush hours (e.g., Marylebone street in London, or the Ayalon High-
way in Tel Aviv), others are congested in only one of the rush hours. For example,
Victoria Embankment road between Black friars Bridge and Waterloo Bridge (see
black circle) is heavily congested only in the morning rush-hour snapshot; and
Pinkas St. in Tel Aviv (see blue circle) is congested only in the evening rush hours
snapshot). The maps were created using Snazzy Maps (https://snazzymaps.com/
help), Rhino5 (https://www.rhino3d.com/download/archive/rhino/5/latest/), and
Grasshoper plugin (https://www.grasshopper3d.com/page/download-1).
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nificant as these cases are very common, particularly in megacities with complex

traffic patterns (Figure 14).

Figure 14: Definition of a jam tree. (A) An example of several potential jam trees.
Each directed link represents a road segment, with an arrow indicating the direc-
tion of traffic flow on it. The number above each link indicates the jam duration
i.e., successive time intervals of traffic jam. Here, each time interval represents
10 minutes. If the difference in jam duration between two nearby segments is
less than a threshold, (in this work 2 intervals that represent 20 minutes), they
are considered part of the same “jam tree.” This is based on the assumption that
there is a causal relationship between upstream and downstream traffic flow. (B)
Key information about the presented jam trees. The Table shows the information
on the tree trunk, size, and cost of each specific jam tree in (A). Each jam tree has
only one specific trunk based on the above definition. The size of a jam tree is
determined by the number of segments that belong to it, including both themain
trunk and any branches., while the temporal cost of each jam tree is defined as
the weighted sum cost of its trunk and branches.

As can be seen in Figure 14, each letter (A to K) in the figure represents a road seg-

ment, with an arrow pointing in the direction of the traffic flow on that segment.

The number above each link is the jam duration (time units) of the link at a given

time. The table in Figure 14b, shows how we calculate the tree size and cost. The

tree size is defined as the number of road segments that a jam tree contains. To

calculate the cost of each road segment and sum them up, we followed stage #1.

If a road segment can be associated with multiple trunks, e.g., link F in Figure 14,

which is a shared branch of trunks A, C, and E, the cost of this segment is divided
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equally among all the trunks it is associated with, in this case, 1/3 of the cost would

be assigned to each trunk. This is because each trunk has an equal probability to

induce congestion.

Stage #3: Spatio-Temporal Evolution of Jam Trees

We expand the method of jam tree to the spatiotemporal Evolution of Jam Tree

(EJT) that describes the evolving features ofMTJs originating from the same traffic

bottlenecks B to observe the evolution patterns of the traffic congestions. An EJT

is expressed as

EJT = {MJT (tG) , · · ·MJT (tP ) , · · · ,MJT (tR)} , (13)

where MJT (t) is the set of congested roads caused by a bottleneck B at time t,

where tG, tP , and tR are respectively the emergence time, peak time, and dissolving

time of a jam tree. The size of a jam tree at the entire lifecycle can be given by

S = {S (tG) , · · · , S (tP ) , · · · , S (tR)}
= {|MJT (tG)| , · · · , |MJT (tP )| , · · · , |MJT (tR)|} ,

(14)

where size S(t) is the number of the congestion roads included in the momentary

jam tree at time t originated from bottleneckB.

The Jam-Tree algorithm serves as a tool for studying the dynamics and evolution

of congestion in cities.

3.2 Dynamic bus lanes under distributed control

This section includesadistributedcontrol ofdynamicbus lanesenvisionedbyEPFL,

which regulates the number of allowed vehicles in the bus lane according to real-

time traffic information. Under the dynamic bus lanes control, a set of corridor

links of the network can be set as links with dynamic priority lanes and their oper-

ation can be handled in a distributed way with controllersmonitoring the car den-

sity at the mixed-use lanes and dynamic bus lanes. Similar to Section 3.1.2, such

distributed control schemes can be further integrated with the perimeter control

scheme in a hierarchical control manner. A detailed introduction about the inte-

gration of Dynamic bus lanes with perimeter control in a network implementation

will be provided in Deliverable 3.1.

3.2.1 Preliminary

In the scope of alleviating congestion in urban networks, several strategies have

focused on prioritizing public transportation systems in various ways, as an indi-
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rect way of reducing the number of cars competing for limited road space. A popu-

lar strategy refers to providing dedicated road space to buses, in order to separate

them from slowly moving traffic in congested conditions. This concept applies in

the cases of Dedicated Bus Lanes (DBL), where a lane is reserved for bus traffic only

and is not available to private cars. Given that DBLs may result in a waste of space

in case they are underutilized—mainly due to reduced bus circulation—research

is focused on more flexible types of lanes, where some private cars are allowed in

the lane when no buses are using them. This concept relies on the fact that mixed

circulation of cars and buses does not affect bus speed in cases of low traffic. On

this base, Bus Lanes with Intermittent Priority (BLIP) and Intermittent Bus Lanes

(IBL) have been proposed [106], [107]. These lane types use transit signal prior-

ity to empty the lane from cars or force cars to change lanes prior to bus arrivals,

respectively, while allowing cars inside in case of bus absence. A more versatile

version of this concept is proposed by Anderson & Geroliminis known as Dynamic

Bus Lanes [108]. These are lanes ofmixed-use in principle, where private car entry

canbecontrolledwith the scopeofprotectingbusoperationsperformance, accord-

ing to the prevailing traffic conditions. The signaling regarding the dynamic lane

status (open or closed to cars) can consist of pavement lights, special lane traf-

fic lights, or variable message signs. Dynamic bus lanes can be seen as a middle

solution between mixed traffic and dedicated bus lanes. This is because they pro-

vide uncongested road space to buses in case of increased congestion in the adja-

cent lanes, by decreasing car entry, while allowing some cars to enter as well. In

this way, the negative effect of reserved road space on car traffic, which can lead to

bottlenecks even in lower congestion, is reduced.

3.2.2 Dynamic bus lanes under distributed control

The idea behind Dynamic Bus Lanes is to regulate the number of allowed vehicles

in the bus lane according to real-time traffic information, such as the location and

speed of buses, the density and speed of cars in mixed-use lanes, and others. The

dynamic feedback regulator should adjust the number of allowed cars in order to

allow fewer when congestion is high and more in less congested conditions while

taking into account performance measures of buses and cars. With such an oper-

ation, overall road space use can be increased leading to less traffic in mixed-use

lanes during congestion peaks. Based on the results of [108], for a corridor road,

dynamic adjustment of the fraction of cars riding in the priority lane ismore prof-

itable than fixed car fraction during rush hour, which opens the way for research

in dynamic control of car entry rate in dynamic bus lanes as part of a distributed

traffic-responsive network control system. A set of corridor links of the network

can be set as links with dynamic priority lanes and their operation can be handled

in a distributed way with controllers monitoring the car density at the mixed-use

lanes and dynamic bus lanes.
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The allowed car rate in a specific time window for any dynamic bus lane corridor

can be the output of a simple controller in the form of a proportional regulator as

follows:

pt = pt−1 +Km(km,t − km,s)−KDL(kDL,t − kDL,s) (15)

where pt is the car rate of time step t, km,t is the average car density over themixed-

use lanes of the corridor and kDL,t is the car density at thedynamic bus lanes at time

step t, while km,s and kDL,s are the respective set points (targets).

The control of car entry of dynamic lanes can also be integrated into a hierarchi-

cal control framework similar to the onedescribed in Section 3.1.2, combinedwith a

perimeter control layer,whichwillmakesure thathighdemandareaswill not reach

very congested states. In thisway, public transportation vehicleswill bemore pro-

tected from high congestion. However, measures should be taken to adjust the

perimeter control implementation in a way that will facilitate the entry of buses

in the protected areas (e.g. with pre-signals or dedicated bus lanes on the borders

between regions. More details about the implementation of this multi-layer net-

work control will be given in Deliverable 3.1.

3.3 Repositioning of on-demand transport

In this section,wedemonstratehowthedistributedcontrol architecture couldben-

efit on-demand transportation by presenting the rough idea of three different ap-

proaches to re-balance the temporal and spatial distribution of on-demand trans-

port vehicles. The first two repositioning methods are contributed by EPFL, while

the latter is byUGE.More details about integrating the vehicle repositioningmeth-

ods in a network implementation are provided in Deliverable 3.3.

3.3.1 Method A

In implementing a controller for a large-scale system, onemay face problems such

as high computational effort due to complexmodels and high dimensions required

for accuratenetworkmodeling, especially if themodel andcontroller aredeveloped

to compute control actions for every individual vehicle over the whole network.

One way to solve this problem is to build a hierarchical control structure. Such

structures decompose the control problem into a hierarchy of decision-making

levels andoperate via coordinating between the actions of anupper layer controller

(operating at the aggregated traffic level) and a lower layer controller (managing

individual vehicles). The control structure is shown in Figure 15.

Theupper layer controller collects aggregated information, suchashowmanyempty

vehicles are ineach region, fromall urban regionsat a relatively largeupdateperiod

Tu. The control action generated from the upper layer determines howmany vehi-
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Figure 15: A hierarchical control framework for vehicle rebalancing.

cles should stay in current regions and howmany vehicles should relocate to other

regions, in order to improve availability and thus minimize the total waiting time

of passengers. Furthermore, the middle layer transfers the obtained upper layer

guidance to the lower layer and specifies which vehicle should stay or move, con-

sidering the travel costs caused by repositioning. It is operated within each region

and requires relatively more detailed information, such as the coordinates of each

vehicle andwhether it is occupied or not. Note that themiddle layer can only be ac-

tivated when the upper layer is active. The lower layer is operated in a distributed

manner so that each vehicle can obtain its own control action, which facilitates its

implementation at a fast update periodTl. The empty vehicles that are commanded

to stay in the current region (i.e., idle vehicles, see the left part of the lower layer

in Figure 15) communicate and cooperate with each other to achieve better vehicle

position configuration, while the rest of the vehicles (i.e., repositioning vehicles,

see the right part of the lower layer in Figure 15) are be guided to other desired re-

gions as per the relocation commands. Details about each one of the layers of this

hierarchical strategy, with their mathematical formulations, are found in the de-

liverable for Task 3.3.

3.3.2 Method B

For a platform serving both solo and pool trips, the second proposed rebalanc-

ing strategy utilizes pool trips as a rebalancing tool. The operator can employ this

strategybyextracting informationondemand intensityanddemand lossdistributed

in different areas of the network, namely any asymmetry in the origin anddestina-
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Figure 16: Illustration for a rebalancing candidate: black solid lines: solo trips with
destinations at black flags; red dotted line: rebalancing pool trip

tiondemandpattern, and recommendvehicles to serve a specific set of pool trips so

that these drivers candropoff their final passenger in ahighdemand area,whereas

without this rebalancing strategy, vehicles are likely to endup in lowdemandareas.

An illustration is provided in Figure 16.

In other words, the in-service vehicle rebalancing strategy takes on a distributed

approach to consider a number of nearby options and proposes one that bestmeets

the rebalancing objectives. A pricing incentive is further proposed to encourage

riders to comply with the rebalancing option that can better serve the overall het-

erogeneous demand in the long run.

In order for the platform to successfully meet its rebalancing objective, an appro-

priate monetary incentive should be offered to increase the attractiveness of the

pool option. The reason is that pooled trips may be perceived by passengers as a

less convenient option compared to an available solo alternative.

When a new rider places a request, given the respective origins and destinations of

potential pooling, the platform identifies the respective zones as exhibiting high

or low demand to assess the necessity of rebalancing actions. A rebalancing pool

trip is loosely defined as one where the vehicle has its final destination in a zone

with high demand loss, whereas if two separate solo trips were to be served, one

vehicle would drop off its passenger in a low demand zone, hence contributing to

theaccumulationof emptyvehicles in thearea, unable to fulfill requests inhighde-

mandareas that are far away. For thispurpose, theplatformshouldaggregate ride-

sourcing travel demand over a predefined number of region centroids according to

the network partitioning, in turn allowing for a level of aggregation that highlights

any spatial and temporal demand pattern.
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The next step consists of setting the respective prices for the solo and pool trips.

Besides a predetermined fare for each option, when a pool trip is considered to be

desirable as a rebalancing trip, theplatformsuggests this trip to the rider andoffers

a slight discount on the trip price.

When traveler i is presented with one solo and one pool trip option, their choice

probability is related to their perceived costs associatedwith each option. The pro-

posedmodel draws a randomnumber xih with a uniform probability between 0 and

1, and compares this value with the perceived attractiveness of the pooling option

hi, which represents the pooling attractiveness hi normalized with an estimated

lower and upper bound on its parameters. Define the attractiveness of pooling hi

for a rider i as

hi = α · νi · (ti, solotravel + ti, solowait − ti, pooltravel + ti, poolwait ) + cpool + (pi, solo − pi, pool) (16)

where, from left to right of Equation (16),α is a parameter tunedbased on the lower

and upper bounds of hi, νi is the passenger’s value of time in $/hour; the next four

terms are the travel and waiting times of the solo and pool options, respectively;

cpool is another tuned parameter that reflects the relative comfort of a pool trip

compared to a solo one, and is identical across the population; finally, the final two

terms together represent the price difference between the solo and pool option. As

for the normalization of hi for obtaining hi, this is performed by considering the

lower and upper bounds for travel time, waiting time, and price, which ensures

that the normalized values are mainly between 0 and 1. If xih ≤ hi holds, the rider

chooses pool, and otherwise solo; in other words, a higher hi is related to a higher

probability of acceptance for pooling. Both riders must accept pooling for a match

to be successful.

Details on the network demand visualization and case study results can be found

in Task 3.3.

3.3.3 Method C

Wedefine a third fleetmanagement strategy for on-demandmobility services, fo-

cusing specifically on the distribution of empty vehicles on the urban network. We

design a decentralized decisional architecture consisting of a mesh of controllers

that divide the urban network into as many service areas. These agents are con-

sidered to be at the service of a public authority (e.g., a transport agency or a lo-

cal authority) and aim to satisfy the demand within their service area. They can

be coupled with physical infrastructures, such as parking lots or depots for vacant

vehicles.

Toguarantee the fastpick-upof the localdemand, thecontrollers arefirst in charge

of predicting the number of travelers requesting a ridewithin the service area. This

prediction can be based on local demandhistory and knownpre-booked requests if
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any. This prediction allows controllers to estimate the number of vehicles needed

to meet local demand and to implement a negotiation process with cars to attract

the required number.

These negotiations between vehicles and controllers are done simultaneously and

in a decentralized way through a two-sided matching market. Vehicles apply to

their favorite relocation offer, i.e., the offer that will maximize their expected rev-

enue, while controllers aim at ensuring the fastest service for the local passengers.

This reconciliationmay require several iterations of the process, with vehicles that

have been rejected by their preferred region applying for the next one. At the end

of this process, vacant vehicles are assigned to a service area to which they will re-

locate. It is assumed at this point that vehicles comply with the outcome of this

process. Figure 17 illustrates this communication protocol.

Figure 17: Communication protocol between travelers, controllers, and vehicles

We discuss the details of the method and algorithm in the Task 3.3 deliverable.

Here we discuss the potential strengths of this method. Its main advantage is that

the rebalancing control is decoupled from the internal management of the fleet by

the on-demand service company and is entrusted to an external operator, whose

agents issue the vehicles with authorizations to relocate within their perimeters.

It is, therefore, a top-down control of the service and its vehicles by a regulatory

authority. Three main advantages can be seen in this property.

First, by controlling the influx of vehicles into a zone and limiting it to what is

strictly necessary, this architecture can have the advantage of limiting the con-

tribution of service vehicles to the demand of the area and contribute to its con-

gestion.

Second, this strategy can also limit the competition between drivers. By simply

informing drivers of high-demand areas, services such as Uber encourage vehi-

cles to reposition themselvesmassively,maintaining intense competition between

drivers and lowering the ride price. In addition to limiting this vehicle accumula-
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tion, ourmethod seems to guarantee a better distribution of activities and incomes

among drivers.

Finally, although our studies have focused exclusively on a single-service context,

externalizing fleet reallocation decision-making holds promise for studyingmore

complex operating environments with competing mobility services. In this case,

the network of local controllers will be able to interact simultaneouslywith the ve-

hiclesofdifferentmobility services,mediating their competitionandcoordinating,

to some extent, their fleets.

3.4 Auctioning schemes for multimodal mobility

services

In this section, we present an auctioning scheme in the context of generic (multi-

modal) mobility services with heterogeneous VOTs and behavioral characteristics,

aiming to enhance the utilization of intersection capacity. This approach is devel-

oped by TUD. More details about integrating the auctioning schemes in a network

implementation are provided in Deliverable 4.2.

3.4.1 Conceptual framework

The introduction of connected vehicles across different modes has created con-

siderable research efforts, in recent years, as to identify approaches for manage-

ment that exploit this added layer of communication. When considering network

intersections as a spatially complex set of scarce commodities, market-based in-

struments can be considered as a means to manage their use ensuring temporal

segregation (i.e., ensuring that the resource is not used beyond its capacity) [109]

[110] [111] [112] [113].

Aspects of market-inspired intersection control can be summarized in Figure 18:

In such approaches, traffic signal phases are assumed to be the auction partic-

ipants, while unconstrained sequence transitioning between green phases is al-

lowed to enhance the utilization of intersection capacity. The auction process de-

termineswhichphase shouldbecomeactivenextorwhether thecurrentgreenphase

should be expected. Each vehicle within a time-dependent lane-specific commu-

nication range is considered as an agent bidding for green time. Under this config-

uration, transport users declare their VOT and behavioral characteristics, such as

level of impatience, at the beginning of their trip so that the wallet agents can then

bid on their behalf based on the timeneeded to cross the intersection and their cur-

rent waiting time. Wallet agents are assumed to communicate bids to an intersec-

tion manager (e.g., roadside units (RSUs)) which executes the auction and assigns
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Figure 18: Market-inspired intersection control framework.

green time accordingly.

3.4.2 Bidding distance determination

Determiningwhich vehicles can participate in the bidding process is crucial for the

efficiencyof trafficauction schemes. To constitute a fairer andmore efficientprac-

tice,we aimed to incorporate thewaiting time for each lanewithinbiddingdistance

determination. Under this context, we proposed an online scheme where the bid-

ding distance dynamically varies depending on the average waiting time for each

lane. In this way, delay accumulation is accounted for in a dynamic manner. More

specifically, at each time step twhen an auction is triggered, an initial bidding dis-

tance factor ztl is determined based on the average waiting time for each lane lwith

a red light indication. Subsequently, the proposed reservation distance per lane dtl
is calculated as the sumof a fixed component of the default bidding distance db and

a variable component depending on the current waiting time observed at the spe-

cific upstream link. In order to avoid strategicmisreporting, this is not reported by

the drivers, butmeasured through infrastructural capabilities under a CAV setting.

Finally, to ensure that the same bidding range applies to all vehicles qtl waiting in

lanes serving a specific phase s, themaximum of the values dtl in the setD
t
s divided

by the number of corresponding lanes is assigned as the reservation distance for

all lanes in Ls. The process is outlined in Algorithm 1 in D2.3.

3.4.3 Bidding scheme

In the proposed approach, drivers are assumed to have a known VOT, yet are al-

lowed to disproportionally increase their bid relative to their waiting time at the

junction, as it accumulates. In this way, we consider the dynamic bidding behavior

of users, contrary to assuming a deterministic user behavior at each time step. The

concept of user impatience and the bidding rules are outlined in the following.
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Impatience function

Across the respective literature, users are typically assumed to bid according to

their known VOT [114] [115]. However, such an assumption overlooks the effect

of accumulated delay on bidding behavior. Indeed, a high-VOT driver may not bid

very high if they enter an intersection during a green phase, whereas a low-VOT

user may grow more impatient as their delay disproportionally increases and de-

cide to significantly increase their bid. To account for such cases, we use a sigmoid

function to represent what we refer to as driver impatience. To capture dynamic

bidding we use a sigmoid-based function (17), which is used as a multiplicative

factor for driver VOT, ranging from 1 to 2.

Pi(w
t
i) = min(Pimax, 1 +

1

1 + e−c1i·(wt
i−c2i)

) (17)

where c1i governs the impatience of the driver, i.e. the larger c1i is the more im-

patient the driver is and c2i is the time where the impatience function becomes 1.5.

These parameters essentially describe driver behavior and have unique values for

each driver; we assume these as uniformly distributed within a specific range, and

that these parameters can be declared by the driver at the start of their trip, along

with their VOT. The wallet agent can then compute bids automatically based on

current conditions. It should be noted that the developed function increases the

initially declared VOT, thus the driver’s lower bid is bounded by the declared VOT

under this configuration.

Bid calculation

The bid for each driver is calculated based on the current traffic light phase, their

VOT, impatience, and their current waiting time. It should be noted that due to the

relationship between maximum distance and minimum green time, winners are

guaranteed to cross the intersection. This ensures that users cannot pay multiple

times for crossing the intersection. Two cases may be discerned in this respect:

1. For users who are currently in a queue at the red light, the time needed to

cross through the intersection depends on their location in the queue and the

saturation headway.

2. For users who have entered the lane-specific auction zone and face a green

light indication, the time needed to cross the intersection depends on their

current speed and distance from the junction.

The bid calculation is shown in Equation (18), as follows:

bti =

{
Pi(w

t
i) · ρ · nti · V OTi sti = red

Pi(w
t
i) · vti · xti · V OTi sti = green

(18)
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Due to hysteresis phenomena that may be observed in traffic light queues if a ve-

hicle facing a green light indication has a speed of zero, then its bid is calculated

based on case 1.

3.4.4 Second-price sealed-bid auction

In the proposed setting, the traffic signal phases are assumed to be the auction

participants. Unconstrained sequence transitioning between green phases is al-

lowed to enhance the utilization of intersection capacity [116]. Bids from drivers

in corresponding movements are combined to form the final bid for each phase.

Under such a mechanism, the winner is the phase submitting the highest bid, yet

the corresponding payment is equal to the second-highest bid. Drivers in the win-

ning movements are then required to pay a fee that is proportional to what they

originally bid. To ensure proper operation of the intersection for pedestrians as

well as prevent unwarranted phase switching and associated time loss, aminimum

green time is guaranteed for any phase that wins the auction. As such, if the win-

ning phase is different than the active green phase at the time of the auction, a

yellow phase is activated for the corresponding phase and subsequently, the win-

ning phase is allotted a minimum duration of green time. If the winning phase is

already active, the corresponding green time is extended by 5 seconds, and a new

auction is subsequently triggered. If a phase exceeds its maximum green time, it

is deactivated during the next auction round. The overall process is outlined in

the pseudocode provided in Algorithm 2 in D2.3. Dynamic bidding auction strate-

gies are promising venues for decentralizing traffic management. Our research

showcases how such an approach could lead to considerable benefits, ensuring in-

centive compatibility, reducing intersection delay and increasing throughput, fur-

ther showcasing that early adoption might be viable, given the rather positive re-

sults obtained for relatively lowpenetration rate scenarios. Inmultimodalmobility

services, auctioning strategies can therefore play a fundamental role in reshap-

ing traffic signal priority so as to take into account e.g. vehicle occupancy, public

transport services, ride-sharing, etc, contributing to sustainability objectives.

3.5 Cooperative schemes for local bottleneck

control

Next, we proceed to present a conceptual framework of cooperative schemes for

local bottleneck and intersection control in a (fully or partially) connected envi-

ronment,which is developedbyTUD.Moredetails about integrating the auctioning

schemes in a network implementation are provided in Deliverable 2.4.
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3.5.1 Conceptual framework

At the level of individual bottlenecks and intersections, vehicle connectivity tech-

nology (V2X) offers promising venues for improvedmanagement. Thanks to these

ITS capabilities, better information can be collected by RSUs when determining

how tomanage the intersection, not only in relation tomeasurements directly re-

lated to traffic itself (e.g., vehicle distance from stop line, expected vehicle trajec-

tory) but further capturing behavioral aspects, such as vehicle occupancy, Value

of Time, vehicle class, vehicle type, paving the road for more efficient and de-

tailed control [117] [118] [119]. Thanks to this added communication layer, ap-

proaches and techniques that, in real-time, adjust signal timings andphases adap-

tivelybasedon the information retrieved fromconnectedparticipantsbecamethere-

fore a feasible approach [120] [117] [121]. Cooperation between the different users

(classes) can be achieved, under ideal conditions, by considering maximum social

welfare as the overarching objective of the intersection controller. Optimization-

based approaches, such asModel Predictive Control, have found considerable suc-

cess in intersection management, allowing on the one hand to express complex

multicriteria objectives, while on the other ensuring strict compliance with con-

straints arising from practical deployment, e.g., in relation to safety margins in

operations, phase/movement compatibility, etc. [122] [123].

To achieve cooperativemanagement considering connected vehicles, we introduce

this information source in an MPC framework, developing appropriate prediction

models for both non-connected and connected traffic participants, reflecting the

different informationquality andgranularity. Consequently, wedeveloped anMPC

controller that, considering the users’ objectives and preferences as well as road

managers’policies (expressed throughweights), optimizes thecombinationof sig-

nal timings and block sequences (see Figure 19) over a rolling horizon, in a mixed

context of both macroscopic measurements (flows and queues) and microscopic

measurements (connected users’ states: positions and speeds). Below are detailed

theoretical frameworks and algorithms for the MPC controller to optimize for the

collective of the users’ utilities, considering the policy weights.

Since real-time performance is a necessity in intersection control, the allocation

rule necessitates a direct-revelation mechanism where agents are asked to reveal

directly their private valuation in the first step, in contrast to the ascendingmech-

anisms. It is assumed that connectedusers’ biddings are automatically determined

by wallet agents that valuate delay through a utility function, considering factors

like their value of time, travel purpose, if they are going to be late andbyhowmuch,

theweather conditions and if they are affected by it, etc. Each connected user com-

municates with the signal controller their bid, preferences, real-time state (i.e.,

their positioning and speed), and intended turning direction. Trajectory models

are developed to predict connected vehicles and cyclists’ future states to inform

theobjective functionof the approaching connectedusers’ travel costs in anygiven
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Figure 19: Example control structure. After block 4, either 1 or 5 will follow.

signal timing and block sequence, according to their predicted delay and if they

would stop.

Figure 20 depicts the architecture of theMPC controller and how they relate. Block

sequence construction andgreen-timeoptimization constitute the twomain com-

ponents of this controller. First, are generated the set of all candidate block se-

quences {Bj} that last at least for thepredictionhorizon. This is done,more specif-

ically, through algorithms A1–A3 (discussed in detail in D2.2.) that respectively

compute the earliest possible end of greens for the current block (tge), end of all

movements given a block sequence (t(ge,out)), and Candidate block sequences (Bj).

Once the candidate block sequences {Bj} are generated, the green times (tg) are

optimized for all Bj ∈ {Bj}, considering the approaching traffic of connected and

non-connected users on different movements, their biddings, state and predicted

trajectory, and the policy weights. In each optimization iteration, algorithms A4

and A5 respectively compute the signal color sequence and timing (Qtime, Qcolor)

and their corresponding green fractions (γm∀m ∈ 1, 2, . . . ,M) for different values

of decision variable tg. Ultimately, the best-performing solution is selected and

planned for realization in the next time step.

Optimization is triggered either at regular time intervals or when new information

is available, e.g., when a queue is detected to have become empty and the move-

menthasgreen (the samewith thepush-button for cyclists andpedestrians),when

a detector becomes occupied while the corresponding light is red (the same with

push-buttons), when an approaching tram or emergency vehicle is detected, or

when connected users are detected. Further details of this method and algorithm,

as well as its application in the pilots, are discussed in Deliverable 2.2.
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Figure 20: Configuration of the MPC controller.
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4 Conclusion

In the deliverable, we investigate the benefits of a distributed approach to traffic

and mobility management, and the preconditions for its effectiveness. To over-

come the “Price of Anarchy” or the possible inefficiency of distributed decision-

making, we have proposed a variety of sophisticated control architectures based

onanextended set ofmathematical/formal relationships that allowone to improve

system efficiency.

We begin by discussing the benefits of using decentralized, distributed systems in

transportation, and examine the price of anarchy under decentralized systems. We

find in a stylized model that, it is possible that distributed systems with suitable

information exchange and feedback/incentive systems can actually perform opti-

mally or close to optimalwith themethodologies developed inDIT4TraM.Wepoint

out that, neglecting the effect of subsystem interactions and uncertainties due to

humans in the loop, can result in an undesirable evolution of the system state.

Furthermore, we proceed to design the proper distributed architectures and infor-

mation exchange requirements for differentDIT4Tramsubsystems,which achieve

better efficiency and resiliency. We develop distributed control architecture for

different applications andmodes in transportation systems.

Westartwithdesigningvariouspassenger-orientedcontrol architectures for large-

scale urban systems, which are concerned with traffic signal control, dynamic bus

lanes, and the repositioning of on-demand transport, respectively. In particular,

we highlight the importance of combining PC strategywithMP local regulators re-

garding effective traffic signal control. In contrast, we also introduce RL as a com-

patible approach,which learns fromexperience anddata to adapt to changing traf-

fic patterns. Last but not least, a jam-tree approach is developed to identify traffic

bottlenecks and facilitate better signal control.

The results inTask 1.1 also benefit thedevelopment of auctioning schemes formul-

timodal mobility services. In multimodal mobility services, auctioning strategies

can therefore play a fundamental role in reshaping traffic signal priority so as to

take into account, e.g. vehicle occupancy, public transport services, ride-sharing,

etc., contributing to sustainability objectives.

The report also discusses cooperative schemes for local bottleneck control. By in-

troducing information sources from connected vehicles, we develop appropriate

prediction models in an model predictive control (MPC) framework for both non-

connected and connected traffic participants, reflecting the different information

quality and granularity. Thus, cooperation between the different users (classes)

can be achieved under certain conditions.

In summarize, Task 1.1 contributes in the early-stage development of control ar-

chitecture of different systems. Inspired by the preliminary outcomes, the real de-
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sign, control logic and methods are further developed and deepened in detail in

Work Packages 2-5.
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