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1.  Introduction 
One of the challenges in assessing urban traffic is developing universal tools that 
apply to different types of urban forms, transportation systems, drivers’ habits, 
etc. In this report, we address the assessment methodology for qualitative and 
quantitative data-driven analyses which is based on the percolation methodology.  

Here, we present a novel methodology for identification, cost evaluation, and thus, 
prioritisation of congestion origins, i.e., their bottlenecks. The presented work is 
based on network analysis of the entire road network from a global point of view. 
We identify and prioritise traffic bottlenecks based on big data of traffic speed 
retrieved in near-real-time. Our approach highlights the bottlenecks that have the 
most significant effect on the global urban traffic flow. We follow the evolution of 
every traffic congestion in the entire urban network and rank all the congestions, 
based on the cost they cause (in Vehicle Hours units). We show that the macro-
stability that represents the seeming regularity of traffic load both in time and 
space, overshadows the existence of meso-dynamics, where the bottlenecks that 
create these congestions usually do not reappear on different days or hours. Thus, 
our method enables to identify in near-real-time both recurrent and nonrecurrent 
congestions and their sources.  

1.1. State of the art 
The 21st century can be characterized as the century of the cities. Since 2008, more 
than 50% of the world’s population lives in urban areas. The increasing 
urbanization process (with urban population annual growth rate of about 1.8, based 
on the world bank estimations) is accompanied by the growing usage of vehicles, 
which leads to a significant increase in traffic congestion in cities around the world 
(1–4). The price of congestion is the enormous time spent on roads (5–8), as well 
as the increasing fuel consumption, air pollution, and Carbone Dioxide emission 
(6–8). Current technological development gave hope that autonomous cars will 
solve congestion problems as they were expected to reduce the number of private 
cars by increasing car-sharing. Recent studies, however, suggest that this is not 
the case (9–12). There exists extensive work in various disciplines, e.g. urban 
planning (2), traffic (13–15), complexity, and networks (16–22) that aims at 
reducing traffic congestion generally, and in urban areas in particular.  
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The work on identifying traffic bottlenecks has been developed from studying 
freeway bottlenecks, through urban active bottlenecks, and lately, with the 
availability of big data — to near real-time identification of traffic bottlenecks. 
Many studies on freeway identification of traffic bottlenecks suggested evaluating 
traffic attributes such as flow, speed, or the differences between the travel duration 
in the road upstream and downstream (23–25, 26). These methods, however, 
cannot be applied directly to urban areas due to the different patterns of the road 
network (e.g., freeways have no intersections of traffic lights) and the travel 
behavior on it. Hence, other methods were proposed to identify urban bottlenecks 
(27-34). For example, Lee et al. (27) implemented a mining model which defined 
spatiotemporal traffic bottleneck (STB), and thereafter developed three methods 
to identify STBs in urban networks. Tao et al. (29), used the Cell Transmission 
Model (CTM) theory, where the Average Journey Velocity was selected as the 
measurement of congestion. The availability of big data, retrieved from traffic flow 
sensors, intrigued new methodologies that use data-driven techniques to identify 
urban bottlenecks. These works propose new methodologies that may be developed 
into tools and implemented in real traffic control systems to relieve congestion and 
enhance the network performance. Such works employed correlation tests and the 
implementation of a Dynamic Bayesian network to overcome the lack of data for 
the entire urban street network (e.g., 26, 30–34). Ma et al. (33) combined complex 
network theory with a user equilibrium model to analyse the evaluation process of 
traffic bottleneck. Chen et al. (26) proposed a method to identify traffic bottlenecks 
by modelling causal relationships between traffic flow sensors located in urban 
areas. For that, they estimated transfer entropy among these sensors, and 
constructed causality graphs to identify traffic bottlenecks and discover 
congestion propagation patterns.  

Existing traffic-management solutions that optimise traffic lights address each 
intersection individually and use bottom-up solutions such as synchronisation and 
slotting to mitigate local congestion (35). Currently, there is a lacuna in providing 
an approach that prioritizes specific bottlenecks over the others, in order to 
optimize the entire road network in near-real-time, as well as to provide a 
dynamic road pricing that charges each vehicle according to its unique effect on 
the entire system. As explained by Hamilton: “When a holistic view of traffic 
management is taken, individual junction efficiencies can suffer to improve the 
state of the network as a whole… A strategic view of the entire urban network, with 
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improved detection and communication technologies, is required to enter the next 
evolution of urban traffic control” (36). Recent work has tried to address the 
optimisation of traffic management solutions. For example, Backfrieder et al. (37) 
developed a forecasting algorithm that identifies expected bottlenecks before a 
traffic jam emerges. It is based on origin–destination data of the vehicles and 
assumes utilisation of vehicle-to-X communication for transmission of 
contemporary vehicle data, such as route source and destination or current 
position, as well as for the provision of the routing advice for vehicles. Zhao et al. 
(38) also focused on urban bottlenecks. They divided the urban road network into 
a uniform orthogonal grid and identified sources of traffic jams in specific cells. Li 
et al. (39) developed a method to identify traffic jams bottlenecks based on the 
percolation process while using big data, retrieved in real-time, of traffic speeds. 
They address the issue of how local traffic flows organize collectively into a global 
urban flow and refer to this process as "traffic percolation". Hamedmoghadam et 
al. (40) studied the way heterogeneity of flow demand affects the network flow 
dynamics under congestion. They used a percolation approach to identify the 
bottlenecks with the highest impact on the network flows.  

In this present work, we developed a methodology to follow in near-real-time and 
simultaneously the evolution of every traffic congestion in the entire urban 
network, and rank all the traffic congestions, based on their cost (in vehicle hours 
(VH) units). We find that non-recurrent traffic congestion incidents dominate the 
urban traffic and, therefore, an efficient real-time identification of traffic 
congestion is critically needed. Our method is innovative as it uses a new strategy, 
which overcomes the challenges that the near-real-time identification problem 
poses. Specifically, our method is innovative in two main aspects: (1) It does not 
aim at predicting the location of future traffic bottlenecks, but identifies them as 
they emerge. Thus, it allows to accurately follow simultaneously all bottlenecks' 
dynamics and evolution in near real-time even during intervention in the system, 
for example, by using an adaptive traffic light control system. Moreover, as our 
method is not based on the identification of historical patterns, it considers all 
types of bottlenecks – recurrent as well as non-recurrent; and (2) By identifying 
and prioritising simultaneously all the bottlenecks in the network, at different 
times, it highlights which bottlenecks have the most significant effect on the urban 
traffic flow. These advantages can be implemented in planning transportation 
systems and reduce urban traffic congestion. 
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Similar to (30, 31, 33, 39, 40) we address the traffic urban flow as a directed 
weighted network. We suggest identifying traffic bottlenecks based on the 
definition coined by (41): “The main feature of a bottleneck is that its downstream is 
in free flow and its upstream is jammed”. Thus, our method is based on the idea that 
if a bottleneck causes its upstream to be congested, the bottleneck must have been 
congested prior to it. Hence, for the definition of a bottleneck, time is as important 
as space.  

 



 

9 
 

2. Methodology 
In this chapter, we present the methodology for identifying, evaluating, and thus, 
prioritizing urban traffic bottlenecks. Our methodology is based on complex 
network theory. We developed a three-stage methodology to identify functional 
clusters and use them to identify and evaluate traffic congestion. In the following 
sections, we present these stages. 

2.1. Jam Tree — Basic method 
 
To identify traffic bottlenecks, we converted datasets of urban areas to dynamic, 
directed traffic networks, where each node represents a junction, and each link 
represents a street segment between two junctions. The direction of the links 
represents the allowed traffic on that street segment, and the weight of the link at 
time segment 𝑡, 𝑊(𝑡), represents the temporal traffic relative speed, i.e., the ratio 
between the temporal speed and the speed at maximal flow for the link. We defined 
a street segment as currently congested if (𝑊(𝑡)) < 0.5. Next, we construct for a 
given time 𝑡 a new dynamic weighted network, where 𝑊′(𝑡) is the sum of 𝑊(𝑡) of all 
times each link has been considered as congested up to time 𝑡 (see figure 1) and 
used the following process to create tree-shaped clusters of congested links: 
 
1. At each time 𝑡, we identify the links with the highest weight 𝑊′ (i.e. those that 

have been congested for the longest time) and define them as potential trunks 
of a jam-tree (JT). Next, we identify the branches of the JT by adding links or 
other trunks, connected to each trunk, with 𝑊′ ≤ 𝑊′𝑡𝑟𝑢𝑛𝑘. By doing so, we 
identify links that became congested no more than a predefined parameter 𝜃, 
in this case — defined as 2 measurement units, after the trunk or after a 
neighboring road. The value of 𝜃 is only used to limit the connections of new 
branches to a JT; in other words, it reflects the maximal duration that a 
congested street segment is considered as the cause for the congestion in its 
upstream. High values of 𝜃 allow a street segment to connect to its downstream 
longer times after its downstream became congested. This leads to larger JTs 
on one hand but reduces the probability of causality on the other. In other 
words, in our analysis, if a street segment became congested no more than 30 
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minutes after its trunk we can assume that the traffic load in these links 
resulted from the trunk of the JT. To test this assumption, we compared the 
result of the analyses of the real data to those of a controlled random model. 
The results of this comparison present a qualitative difference, which 
strengthens our assumption of causality. By using this definition, we consider 
the street segment that acts as the trunk as a bottleneck of the JT. Note, that we 
chose 𝜃 = 2 as our datasets had 15 minutes time-intervals and thus, our 
analysis considered the macro-dynamics of urban traffic. Not that for other 
datasets with higher resolution of shorter time intervals, lower values of 𝜃 haev 
been used.  

2. We continue assigning connected links to these JTs in the same iterative 
process until no more connected links (roads) with 𝑊′ ≤ 𝜃 for the last added 
branches are found. 

3. We start again at stage 1, but now we look for the link with the highest weight 
𝑊′, that has not been assigned to an existing (JT). 

4. We continue this process until there are no more congested links that are not 
assigned to any JTs. 

The resulted clusters represent JTs and the time each of their links was loaded. 
Examples of JTs are shown in figure 1. 
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Figure 1: Clusters of JTs. The numbers represent the time (in 15 minutes units) each street 
segment was congested. (A) All the coloured streets are part of one JT where the red street 
represents its trunk: its duration (12 successive measurements that represent 3 hours) is the 
longest, which indicates it was the first street with traffic load in this JT. (B) Two JTs (represented 
by red and blue colours). The red JT does not include the street that has been loaded for 2 
measurements, as the time gap between this street and its adjacent one is larger than the pre-
defined threshold 𝜃 (see the upper green circle). The blue JT cannot be considered as part of the 
red JT, as the duration of its trunk is longer than that of its adjacent street in the red JT (see the 
lower green circle). When a bottleneck is released but the JT that follows it remains congested, 
the next street segment with the longest duration becomes the new trunk of the JT and carries 
the cost of the remaining branches of the JT. 

2.2. Economic Cost — Prioritisation Strategy 
While some traffic congestion incidents can last many hours, their economic cost 
might be marginal, if, for example, they occur in peripheral small streets. To assign 
prioritisation for traffic congestions, we measure their cost in vehicle hours (VH). 
In this section, we introduce four formulas used to calculate the cost at different 
times of the JTs and the links they include.  

The cost of a link 𝐶𝑖𝑗(𝑡) is calculated for every measurement unit — 15 minutes in 
this case (this duration can be changed according to the required accuracy. Shorter 
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periods will reflect more accurate calculations while longer periods will reflect 
more general estimations) — relative to its cost  𝑈𝑓, free-flow speed. This 
measurement unit demonstrates the meso-dynamics of urban traffic. Indeed, 
using shorter periods of time will allow following the micro-dynamics of urban 
traffic. This cost represents the time it takes to cross a road (link) in comparison to 
the time it takes to cross this road in its maximal flow (calculated for each link), 
multiplied by the number of drivers who crossed the endpoint of this link at a 
specific time: 

𝐶𝑖𝑗(𝑡) = 𝑑𝑖𝑠𝑡𝑖𝑗 ∗ (
1

𝑢𝑖𝑗(𝑡)
−

1

𝑢𝑞𝑚𝑎𝑥𝑖𝑗

) ∗
𝑞𝑖𝑗(𝑡)∗𝑙𝑖𝑗

60

𝑇

   (1) 

Here, 𝒅𝒊𝒔𝒕𝒊𝒋 is the length of the link in km, 𝒒𝒊𝒋(𝒕) is the current flow on the link, 𝒖𝒊𝒋(𝒕) 
is the current speed on the link, 𝒖𝒒𝒐𝒊𝒋

 is the speed when the flow is optimal, 𝑻 

represents a measurement unit which corresponds to 15 minutes (in the present 
case) and 𝒍𝒊𝒋 is the number of lanes in the link (i.e. the number of lanes in each street 
segment of the JT).  

The momentary cost of a JT represents the sum of the costs (eq. 2) of all the links 
that are included in it at a specific measured time: 

𝑀𝑜𝑚𝑒𝑛𝑡𝑎𝑟𝑦𝐶𝑜𝑠𝑡(𝑡)𝐽𝑇 =  ∑ (𝐶𝑖𝑗(𝑡))𝑛
𝑏𝑖𝑗

  (2) 

And the cumulative cost of a JT is the cost of the JT from the moment it was created 
until the time (t) which is calculated as:   

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝐶𝑜𝑠𝑡(𝑡)𝐽𝑇 =  ∑ (∑ 𝐶𝑖𝑗(𝑡𝐼)𝑡
𝑡𝐼≤𝑡 )𝑏𝑖𝑗

 (3) 

Here, 𝑏𝑖𝑗 is a branch (i.e. link) in the JT and 𝑡𝐼 is the time each branch 𝑏𝑖𝑗 was a part 
of the JT (in 15 minutes units).  

Lastly, to follow the spatio-temporal dynamics of the system, we combine all the 
different JTs that had the same street as their trunk throughout the entire 
examined week and refer to them as Repetitive Jam Trees (RJT). The cumulative 
cost of the RJTs represents the sum of all the JTs they contain at a specific time 
window (e.g., day or week): 

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑅𝐽𝑇 = ∑ 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝐽𝑇  (4) 
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Equations (2)-(4) allow calculating not only the cost of each JT from the moment 
it became congested until it was dissolved but also its dynamics and temporal costs 
at different times. 

2.3. Extended Definition of Jam Trees 
We extend the definition of a jam-tree to include more general cases where several 
jam trees may overlap and share the same trunk or branches. This is highly 
significant as these cases are very common, particularly in megacities with 
complex traffic patterns (Fig. 2).  

 

Fig. 2. Definition of a jam tree. (A) An example of several potential jam trees . Each directed link 
represents a road segment, with an arrow indicating the direction of traffic flow on it. The number 
above each link indicates the jam duration i.e., successive time intervals of traffic jam. Here, each 
time interval represents 10 minutes. If the difference in jam duration between two nearby 
segments is less than a threshold, (in this work 2 intervals that represent 20 minutes), they are 
considered part of the same "jam tree." This is based on the assumption that there is a causal 
relationship between upstream and downstream traffic flow. (B) Key information about the 
presented jam trees. The Table shows information on the tree trunk, size, and cost of each specific 
jam tree in (A). Each jam tree has only one specific trunk based on the above definition. The size 
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of a jam tree is determined by the number of segments that belong to it, including both the main 
trunk and any branches., while the temporal cost of each jam tree is defined as the weighted 
sum cost of its trunk and branches. (See Methods). 

As can be seen in Fig.2, each letter (A to K) in the figure represents a road segment, 
with an arrow pointing in the direction of the traffic flow on that segment. The 
number above each link is the jam duration (in time units) of the link at a given 
time. The Table in Fig. 2b shows how we calculate the tree size and cost. The tree 
size is defined as the number of road segments that a jam tree contains. To 
calculate the cost of each road segment and sum them up, we followed stage #1. If 
a road segment can be associated with multiple trunks, e.g. link F in Fig. 1b, which 
is a shared branch of trunks A, C, and E, the cost of this segment is divided equally 
among all the trunks it is associated with, in this case, 1/3 of the cost would be 
assigned to each trunk. This is because each trunk has a the same probability to 
cause the congestion. 

2.4. Spatio-Temporal Evolution of Jam Trees 
We expand the method of jam tree to the spatiotemporal Evolution of Jam Tree 

(EJT) that describes the evolving features of MTJs (Momentary Jam Tree) 
originated from the same traffic bottlenecks B to observe the evolution patterns of 
the traffic congestions. An EJT is expressed as  

{ ( ), ( ), , ( )}G P REJT MJT t MJT t MJT t= , (5) 

where ( )MJT t  is the set of the congested roads caused by a bottleneck B  at time t, 

where 
Gt , 

Pt , and 
Rt  are respectively the emergence time, peak time, and dissolving 

time of a jam tree. The size of a jam tree at the entire lifecycle can be given by 

{ ( ), , ( ), , ( )} {| ( ) |, ,| ( ) |, ,| ( ) |}G P R G P RS S t S t S t MJT t MJT t MJT t= =  (6) 

where the size ( )S t  is the number of the congested roads included in the 

momentary jam tree at time t originated from bottleneck B . 
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3. Results 
Here, we present the results of the above methodology. Our methodology was 
tested on two datasets. The first includes three urban areas (London center, Tel 
Aviv center (including the Ayalon highway — the main road that crosses the city 
from North to South), and Tel Aviv Center (without the Ayalon highway); and the 
second covers five large cities in China (i.e., Beijing, Shenzhen, Shanghai, 
Hangzhou and Jinan). For the first dataset, we collected from Google Directions API 
the speeds of road sections in London center and Tel Aviv every 15 minutes over a 
week's time. We developed an algorithm that considers additional road segments 
(for which we did not have data) based on interpolating the data collected for their 
adjacent road segments. For each case, we analysed the data of 5 working days only 
(Mon–Fri in London and Sun–Thursday in Tel Aviv). This is because the results 
indicate that the dynamics of these systems are significantly different during the 
weekends. For the Chinese cities, the operational information is the real-time 
velocity records of each road segment with a resolution of up to 1 minute, which is 
derived from the global positioning system (GPS) data recorded by floating cars 
(e.g., taxies and private cars). The data has already been aggregated from numerous 
trajectories, and the velocity assigned to each link is the result of aggregation. The 
scale of the road network and the coverage period of velocity records are shown in 
Table 1. 

Table 1. Key information of the dataset of different cities. 

City Road segments Period 

London Center 18,050 21–27/3/2018 

Tel Aviv 5,425 12–18/2/2017 

Tel Aviv Center 3,871 12–18/2/2017 
Beijing 52,968 Oct. 2015 

Shenzhen 22,248 Oct. 2015 

Shanghai 50,469 Oct. 2015 

Hangzhou 35,815 Oct. 2015 

Jinan 22,690 Oct. 2015 
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3.1. Macro-stability 
Previous work found universal laws in urban traffic congestion (43–49). Some 
studies even identified a high degree of regularity in the measured speed of the 
street segments (42, 43). Others focused on the time evolution of urban congestion 
(46, 48), but not through the analysis of bottlenecks. At large scales, traffic 
dynamics and congestion have been found predictable (42, 43) and their weights 
follow power-law distributions (46, 48). With this in mind, we analysed the 
bottlenecks' dynamic at the macro-scale and found they indeed present such 
regularities. We analyzed three temporal scales: the largest scale is a work week 
(that includes all the examined working days), the intermediate scale is a 24-hour 
day, and the microscale is the different hours of the day. 

We explored the behavior of the traffic congestion incidents of the different 
datasets for London and Tel Aviv. Throughout the entire weekdays and examined 
several attributes of the systems: the duration of the traffic congestions, their size 
(in terms of the number of road segments), and their cost (in Vehicle Hours units). 
Figure 3 shows that the distributions present similar behavior for all three datasets. 
For all datasets, the probability density functions (PDFs) present well 
approximated power-law distributions. This implies that despite the different 
infrastructure and transportation facilities in these two cities, there may be 
common characteristics in London and Tel Aviv in terms of their traffic macro-
dynamics.   
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Figure 3: Analysis of the PDFs of the RJTs in London, Tel Aviv, and Tel Aviv Center (based on the 
data of all 5 days). (A) PDF of average cost (in VH) (B) PDF of duration (in minutes).  

 

These findings may be explained by the fact that, while different cities have 
different physical constraints, historical development, and socio-economic 
processes, urban road networks were developed based on similar principles, i.e., 
similar parameters of demand (urban travel) and supply (road infrastructure).  

We examined these distributions on data of separated days and hours and found 
that the results of the analysis of all these three temporal scales (large, 
intermediate, and short) show that the probability of having traffic congestion of 
a given cost is scale-free for all cities and in all time spans. Such PDFs can be useful 
for forecasting the existence of costly traffic congestions (above a certain 
threshold) and the volume of their costs at different time scales. However, the 
values of these congestions (in VH units) and the exponents that govern their 
behaviour decrease with size, depend on spatio-temporal features and represent 
the different attributes of the different areas. These attributes can relate to the 
morphology of the street network (45, 47) or other factors such as different types 
of transportation methods available in each location, working hours norms, etc. 
Furthermore, while the distributions remain similar on different days in the same 
city, we also examined how much the roads involved in the jam trees remain the 
same on different days.  

3.2. Meso-dynamics 
When zooming into the meso-dynamics of the traffic congestions, we unveil local 
characteristics that reflect shifts in the location of bottlenecks over time. 

We analysed the repetition of bottlenecks on different days and found that most of 
the bottlenecks are irregular and the same bottlenecks usually do not repeat daily 
(Fig. 4A-C). In all three datasets, close to 60% of all bottlenecks appear only in one 
day of the week. About 20% appear in two days and less than 10% of the bottlenecks 
with the same level of cost, appear in three days. Even when ignoring their cost 
levels, the number of bottlenecks that appear once or twice exceeds 60%. Thus, we 
see that most heavy traffic congestions do not repeat daily. We also compared the 
above results to the analysis of the bottlenecks’ duration (in terms of hours) and 
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found a similar behavior, i.e., bottlenecks that lasted longer tend to repeat slightly 
more frequently than the shorter ones. 

 

Figure 4: Average and maximal Traffic Quality (TQ) values and standard deviation (σ) for DSCs 
in London and Tel Aviv. The maximal values refer to maximal values that appeared in at 85th 
percentile of the samples and the average of the top 15% values. 

Next, we examined the dynamics of the bottlenecks that affected the jammed trees. 
For that, we analysed (for each street that was part of any of the traffic congestions 
during our examination time window) the number of different bottlenecks it was 
connected to. We found congested streets are connected to a different number of 
bottlenecks (ranging between 1-22) regardless of their cost. However, the 
bottlenecks in London and Tel Aviv Center are located relatively in proximity to 
each other (their median distance is less than 1 KM) while the bottlenecks in Tel 
Aviv are spread over a wider area (up to 2.4 KM), which can be explained by the 
length of the Ayalon Highway (see above).  This means, that while the traffic 
congestion can be associated with a specific area in the city, and even with some 
specific streets (38, 40), the location of the bottlenecks that causes the congestion 
changes constantly on different days and hours. 

3.3. Urban Fingerprints 
To understand at what time during the day the jam trees, connected to a specific 
trunk, will have the greatest impact on the traffic system, we analysed the 
dynamics of the number of jam trees throughout the day. By calculating the 
probability density of the number of trunks (each represents a jam tree) during the 
day, we found two distinct peaks: one between 7:00–9:00 and the other between 
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17:00–19:00 in both Beijing and Shenzhen, these represent the rush-hour 
windows in both cities (Fig. 5A and Fig. 5B). Additionally, in both cities, we found 
more jam trees during the afternoon rush hours in comparison to the morning rush 
hours. The number of jam trees in each time unit (Fig. 5A and 5B) depicts the 
frequency of existing jam trees but it does not give us enough information about 
their actual importance (i.e., size or cost). We, therefore, calculate the total 
momentary cost by summing up the momentary cost of all jam trees in the traffic 
network at a given time, and analysed how this value evolves over time. As seen in 
Fig. 5C and Fig. 5D, the evolution of the total momentary cost also presents, for 
both cities, two peaks during rush hours. These results not only indicate, as 
expected, that during rush hours the urban transportation network has 
significantly more and larger traffic jams, but also quantify their momentary cost. 
Moreover, when comparing Beijing and Shenzhen, we found that the total 
momentary cost during rush hours in Beijing is approximately 4-5 times as that in 
Shenzhen, which is most probably because Beijing is a larger city. It can be also 
seen that in both cities the evening rush hour is more congested than the morning 
rush hour, with a higher total momentary cost during the evening rush hour of 
more than 15000 Vehicle Hours (VH) in Beijing and over 3000 VH in Shenzhen. 
However, it is worth noting that when it comes to the average momentary cost at 
each moment, as seen in Fig. 5E and Fig. 5F, the situation can be rather different. 
In Shenzhen, the average momentary cost during the above 2 rush-hour periods is 
almost the same, while in Beijing the average momentary cost during the morning 
rush hours is larger than that during the evening rush hours. This implies that 
during the morning rush hours, the traffic congestion is more intense compared to 
the evening rush hours, with higher average momentary cost and lower number of 
trees. 
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Figure 5: Distribution of jam tree costs of urban traffic. (A) and (B) The distribution of jam costs 
associated with a given trunk in a typical working day in (A) Beijing and (B) Shenzhen. (C) and 
(D) Probability density of the jam cost exponent β for 17 working days for (C) Beijing and (D) 
Shenzhen. We also apply two-sample Kolmogorov-Smirnov test (KS test) to check if the 
distributions of daily exponents in two cities are indeed different and obtain a p-value of nearly 
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0 (much lower than the common threshold of 0.05). The distinct values of exponents in these two 
cities suggests the exponent β is a fingerprint of a city. 

 

Next, we focus on the distribution of tree cost of all jam trees during the day. 
Specifically, for a given day, we sum up the cost of jam trees associated with each 
specific trunk during the whole day and considered it as the daily cost associated 
with this trunk. The identification of highly cost trunks is important for 
identifying, managing, and improving the traffic in these locations in order to 
improve global urban traffic. As can be seen in Fig. 6A and Fig. 6B, for a typical 
working day (Oct. 26, 2015), we found that, in both cities, the probability density of 
the daily cost of jam trees follows a power-law distribution, with exponents of 1.81 
and 1.97, for Beijing and Shenzhen respectively. Furthermore, when considering 
the working days only (over a month), we also found that the exponents of all the 
cost distributions of jam trees for individual days have very similar characteristics 
with similar exponents. As can be seen in Fig. 6C and Fig. 6D, the cost distribution 
exponent in Beijing is 1.84±0.05, while in Shenzhen the value is 2.09±0.07. We also 
calculate the exponents of three other cities and obtained values of 1.80±0.05 for 
Shanghai, 1.78±0.07 for Hangzhou, and 1.75±0.05 for Jinan, respectively. 
Therefore, we argue that these exponents could be considered as a "city signature" 
that characterises the pattern of traffic congestion in a city. This is because the cost 
distributions are similar on different days for the same city, but rather different in 
two different cities. Note that smaller distribution exponents represent a more 
congested city, as they indicate the existence of more large-scale traffic jams in the 
city. Indeed, it is observed based on the cost distribution that the overall traffic 
performance in Beijing is worse than that in Shenzhen. 
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Fig. 6. Distribution of jam tree costs of urban traffic. (A) and (B) The distribution of jam costs 
associated with a given trunk in a typical working day in (A) Beijing and (B) Shenzhen (C) and 
(D) Probability density of the jam cost exponent 𝛽 for 17 working days for (C) Beijing and (D) 
Shenzhen. We also apply a   two-sample Kolmogorov-Smirnov test (KS test) to check if the 
distributions of daily exponents in two cities are indeed different and obtain a p-value of nearly 
0 (much lower than the common threshold of 0.05). The distinct values of exponents in these two 
cities suggests the exponent 𝛽 is a fingerprint of a city. 

Based on the above results, we can conclude that while specific traffic congestion, 
at the microscopic scale, may vary from day to day, the overall macroscopic pattern 
of traffic congestion in a city (i.e., the distribution of costs throughout the day) 
remains stable and consistent from day to day. This raises the following question: 
Is there an indicator that can characterise at the macro-scale the daily pattern of 
traffic congestion in a given city? As the traffic system is expected to present 
different characteristic during different periods (i.e., rush hours and non-rush 
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hours) the effectiveness of the above indicator, i.e., the exponent of cost 
distribution β, needs to be further validated by testing it at different hours during 
the day. To do so, we analysed the evolution of exponent β over time during the 
entire day. We analysed the exponents of the cost distribution of jam trees in 5 
different cities in China, during different times of the day over different days. For 
each city, we calculate the tree cost every 20 minutes and analysed the 
corresponding momentary tree cost distribution. Our findings show that for each 
city the cost exponent of the jam trees exhibits a similar temporal pattern during 
working days (as shown in Figure 7A-E). It is worth noting that the patterns are 
similar for the same city but different for different cities. The “W-like” shape 
curves for the momentary cost exponent in each day are also consistent with the 
results presented earlier, indicating that the traffic jam is typically more 
significant during morning or evening rush hours. Focusing on the evolution of the 
exponent of the tree cost distribution in different cities, it is interesting to learn 
that in Shanghai, the traffic situation is typically worse during the morning rush 
hours than during the evening rush hours. This is represented by smaller 
momentary cost exponents in the morning rush hour period. However, for the 
other cities, the momentary cost exponents during the two periods are similar. 
Overall, the momentary cost exponent for a given time is typically larger in 
Shenzhen than that in the other cities, suggesting a better traffic flow in Shenzhen 
compared to other cities. 

3.4. Asymmetry in the congestion dynamics 
Following the time evolution process of a jam tree, we divide the size S (i.e., the 
number of congested roads in the jam tree) into two stages: growth and recovery 
stages. The growth stage of an EJT ends and the recovery stage begins when the 
size S reaches its maximum (𝑆𝑃). The entire lifespan T of the EJT is defined as the 
sum of the duration TG of the growth stage and the duration TR of the recovery 
stage, i.e., 

𝑇 = 𝑇𝐺 + 𝑇𝑅, (7) 

where the growth duration is the time-interval from the earliest stage when a 
trunk emerges to the time it reaches its maximal size 𝑆𝑃 , and the recovery duration 
is the time-interval from the time the jam tree reaches 𝑆𝑃 to the time it has been 
completely dissolved and the traffic flow is fluent. 
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To explore the evolution durations of the growth and the recovery stages, we 
study the lifecycle of each jam tree in the entire road networks of Beijing and 
Shenzhen during the entire day over a period of 30 days. To this end, we computed 

the vectors of the growth duration 1{ , , }N

G G GT T T=  and the recovery duration 
1{ , , }N

R R RT T T= . Here, N is the total number of jam trees, which is over 670,000 on 

a workday in Beijing and over 180,000 in Shenzhen. The distributions of the 
durations TG and TR on Friday, October 16, 2015, in both cities are presented in Figs. 

7 A and B. The results show that the distribution of RT  is significantly broader than 

that of GT . i.e., EJTs typically reach their maximum size SP within 100 minutes, but 

can take them up to 1000 minutes to return.to a free flow state. The distributions 

of GT  and RT  are both well approximated by power-law distributions 

 𝑝(𝑇𝐺) ∼ (𝑇𝐺)−𝛽𝐺  (8)  
 𝑝(𝑇𝑅) ∼ (𝑇𝑅)−𝛽𝑅  (9)  

 

with exponents G  close to 5.9 on Oct. 16 2015 for both cities, and R  equal to 2.5 

for Beijing and 2.69 for Shenzhen. In addition, the distribution of the ratio r  

between RT  and GT  for each EJT also follows  a power-law distribution 𝑝(𝑟) ∼ (𝑟)−𝛽𝑟  

with exponents 
r  around 2.71±0.05 on workdays in Beijing, and 3.03±0.05 on 

workdays in Shenzhen. The average value < >r  for all the jam components is 
evaluated by 

1 1

1 1
< >

i

R
i i

i N i N G

T
r r

N N T   

= =  , (10) 

where the values of < >r  are 2.06 for Beijing and 1.66 for Shenzhen on Oct. 16 2015. 
This shows that on average, the duration of the recovery stage of a congestion is 
2.06 times as long as its growth duration in Beijing, and 1.66 times in Shenzhen.  

The above results show the strong asymmetry between jam agglomeration 
and dissipation. The agglomeration or dissipation of a jam tree associated with a 
bottleneck depends on whether the flow demand D of the bottleneck could be 

dissolved by its capacity C . The ratio ( ) /D C C = −  can represent the ability of the 

congestion to accumulate ( 0  ) or dissipate ( 0  ). If the demand for the 
bottleneck is equal to its capacity per time unit, the branches in the EJT may remain 
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unchanged. If the demand becomes larger than its capacity ( 0  ), the size of an 
EJT increases as new branches are added to it. Otherwise, its size decreases by 
losing branches that are no longer congested. The lowest bound of   is 1− , 
whereas the upper bound of   can be larger than 1, revealing that the dissipation 
ability of traffic congestions is potentially less than their agglomeration. For 
example, if the congestion accumulates with 3 = , the jam queues accumulated in 
one time unit require at least three times longer to dissolve. This can explain why 
the recovery stage takes usually longer than the growth stage.  

Examining the growth and the recovery durations on other days, we found that 

the power law exponents R  of the distribution of the recovery duration are more 

consistent and similar across different days, compared to the G  values of growth 

duration. This may indicate the stable self-adaptability of the traffic system (Figs. 

7 C and D). Note also that both exponents ( R , and G ) are slightly but consistently 

larger on holidays than those on workdays and weekends. In Figs. 7 E and F, we 
show the average ratio < >r  between the recovery duration and growth duration 
for 30 days during October 2015 in Beijing and Shenzhen. The results show that 
< >r  has a stable value for a specific type of days. In both cities, < >r  on workdays 
is larger than that on non-working days. This means that on workdays, the 
recovery duration of the jam trees is longer than their growth duration, compared 
to non-working days. These findings may be explained by the higher travel 
demand on workdays compared to holidays, leading to larger traffic congestion 
and making it harder for the congestion to dissipate.  
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Figure 7. Distributions of growth duration and recovery duration. A and B. Growth duration TG and 
recovery duration TR follow power-law distributions. The data is taken for Friday, October 16, 2015, 
for (A) Beijing and (B) Shenzhen. C and D show the exponents 𝛽𝐺 and 𝛽𝑅 for each day in the entire 
month for (C) Beijing and (D) Shenzhen. E and F show the values of < 𝑟 > for each day in the entire 
month for (E) Beijing and (F) Shenzhen. The days between October 1 and October 7, are the seven 
days of the Chinese National holidays. October 11, 17, 18, 24, and 25 are the weekends, and the other 
18 days are workdays. The mean values and standard errors on subfigures C to F are based on 
weekdays. 

 

3.5. Correlation between spatial and temporal 
evolution 

To further explore the relationship between temporal and spatial evolutions, 
we examined the correlation between the spatial maximal size SP and the temporal 
growth speed of the congestion. For that, we defined and calculated the growth 
speed of each EJT, where the average growth speed VA is defined as the maximal 
size SP divided by its growth duration TG,  
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 P
A

G

S
V

T
= . (11) 

A larger AV  means that a bottleneck induces more congested branches per time 

unit, which is set to be 5 minutes here. Figs. 8 A and B show the relationship 

between PS  and AV  on October 16, 2015, in Beijing and Shenzhen. In the box plots, 

SP is classified into different groups by the values of VA. It is seen that EJTs with a 
larger average speed are more likely to reach a larger size. The linear correlation 

between the maximal size 1{ , , }P

N

P PS S S=  and the average growth speed 
1{ , , } AA

N

AV V V=  of these EJTs is also characterized by high values of Pearson 

correlation coefficients ,P AS V , ( Fig. 8). When omitting small jam trees with 1PS =  

the value of ,P AS V  on Oct. 16 2015 is 0.75 for Beijing and 0.79 for Shenzhen, 

indicating that SP and VA have a strong positive linear correlation. We also found 

that in both cities, the values of the correlations ,P AS V  in the studied month are 

stable for a specific type of days (Fig. 8 C and D). The correlation is larger on 
holidays than on workdays, and also larger in Shenzhen than in Beijing. 

 

Fig. 8. Correlation of the maximal size SP and the temporal growth speed of EJTs. A and B. Box 
plots of size SP grouped by average growth speed VA on Friday, October 16, 2015, in (A) Beijing 
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and (B) Shenzhen. The black lines in the bottom, middle and upper of the largest box are 
respectively 25%, 50%, and 75% percentiles of SP. Due to the long upper tail of the distributions, 
the 75%-100% percentile is equally divided into smaller boxes. C and D. Pearson correlation 𝜌𝑆𝑃,𝑉𝐴

 
for 30 days during October 2015 in (C) Beijing and (D) Shenzhen. Holidays represent the 7 
National-days, and the workdays include 18 days. 
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4. Summary of the methodology 
We showed that although some universal power-laws distributions that appear 
daily govern the macroscopic spatio-temporal behaviour of sizes of traffic 
congestion incidents, there are also strong indications that local attributes affect 
traffic dynamics, as the same traffic bottlenecks usually do not reappear on 
different days. In other words, the macro-stability, presented by the scaling 
characteristics of the traffic bottlenecks that represent the seeming regularity of 
traffic load both in time and space, overshadows the existence of rich meso-
dynamics, where the bottlenecks that create these JT loads change significantly 
their location in time and space. This means that in order to manage traffic 
congestion in different locations and at different times and determine priorities 
regarding which ones should be addressed first, there is a need to implement 
unique solutions that track traffic and evaluate the relative effect of each 
bottleneck in real-time on the entire road network. Such solutioned are yet to be 
developed. 

In the next stage, we extended the jam tree model in order to detect more potential 
configurations of jam trees. Particularly, we addressed the case where several jam 
trees share the same trunk or branches, a situation that frequently appears in 
complex traffic systems such as traffic networks in megacities.  In this sense, the 
extended model is found useful for megacities or urban agglomerations. We found 
that both the number of existing jam trees and their average cost increase every 
day during rush hours. We also calculated the distribution of the cost of all the jam 
trees during a day and found that the cost distribution of the jam trees follows a 
power-law distribution with a similar daily exponent for all the analysed cities. 
Furthermore, we analysed the evolution of the cost distribution exponent over 
time during the entire day and found that the patterns of the cost distribution on 
the jam trees during the day, can be considered as the fingerprint of the urban 
traffic in a city. This is because the patterns indicated by the evolution of the above 
exponent are consistent each day for a specific city, but different for different 
cities. The unique patterns of traffic in urban areas (i.e., the suggested fingerprints 
of the urban traffic) may provide valuable insights for establishing new traffic 
management goals and assessing the effectiveness of various traffic improvement 
strategies. 

Lastly, we analysed the spatiotemporal features of the Evolution of Jam Trees 
(EJTs) throughout the entire day over a month time and found that the growth and 
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recovery stages of EJTs develop asymmetrically and that the duration of each stage 
follows a power-law distribution. Additionally, the recovery time of the EJTs is 
approximately twice as long, as the time it takes them to form. This trend is similar 
to patterns observed in other natural phenomena, such as the slower recovery of 
COVID-19 cases in terms of both their spatial distribution and number of infections 
compared to the rate of its outbreak. 
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5. An example - Comparing different 
control scenarios in Utrecht  

We used our proposed methodology to examine different control scenarios for the 
Utrecht model. In this model we analysed a network of 878 nodes and 1570 directed 
links with two volumes of demand: 1. medium demand for non-rush hours and 2. 
high demand for rush hours.  

In the following, we address them as: 

• NC: Fixed time control settings / no adaptive control  
• MP_0: Max Pressure in all nodes   
• MP_25: Max Pressure (single) in 25% of selected nodes  
• PC: Perimeter Control (single)  
• PC_MP_20: Max Pressure in 20% of the nodes+ Perimeter Control 
• MP_15: Max Pressure in 15% of selected nodes  
• PC_MP_25: Max Pressure in 25% of the nodes + Perimeter Control 

We used the mean link speed in every control cycle (in km/h, ranging from 0 to 25), 
and 240 out of 320 (med/high) control cycles (where every control cycle lasts for 
90 seconds). Based on the bottleneck methodology, we calculated the momentary 
cost for every JT in the system for the different scenarios (other than NC and 
MP_0). 

When we tested the distributions of the cost of JTs under different strategies, we 
found that the PC and PC_MP_25 strategies present better results in comparison 
to other strategies (figure 9). 

When examining the different control strategies under medium demand, we found 
different results; in this case, most of the scenarios yields similar and good result 
in terms of traffic. The only exception is the   MP_0 (Max Pressure in all nodes) 
strategy which yielded higher JTs cost in comparison to other strategies.  
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Fig. 9. Distribution of the cost of JTs under different control strategies under high demand. The X-
axis represents the Jam cost of a tree while the Y-axis represents the fraction of the jam trees 
within a certain cost. Higher absolute values of the exponents, mean the lower frequency of jam 
trees with large costs, which indicates better traffic. 

 

Fig. 10. Distribution of the cost of JTs under different control strategies under medium demand. 
The X-axis represents the Jam cost of a tree while the Y-axis represents the fraction of the jam 
trees within a certain cost. Higher absolute values of the exponents, mean the lower frequency of 
jam trees with large costs, which indicates better traffic.  
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6. An algorithmic approach for the 
adaptation / self-calibration of 
computer agents  

To use an algorithmic approach for the adaptation/self-calibration of computer 
agents we have developed two different simulation models using two different 
platforms – Sumo and CityFlow. In the following, we introduce these models and 
their potential to contribute to this purpose. 

6.1. Sumo platform (BIU) 
This model was developed based on SUMO platform which allows simulating the 
traffic flow of cars and traffic lights operation systems at the micro level (for 
elaboration on this model see D3.2). It is based on the following traffic signal 
control schemes: 

1. Fixed-time signal controllers – as explained above. 
2. Actuated - Signal controllers based on SUMO optimization algorithm – 

actuated mode. In this mode, the system tries to alternate between phases 
based on demand at the phase of the intersection, with a high-demand 
phase receiving priority over a low-demand phase in both duration and 
timing. A minimum time for each phase is defined. 

3. Demand calculation based on the number of vehicles on each road of the 
intersection. The algorithm determines the phase durations based on 
demand in each of the roads leading to the intersection (where we set a 
minimum time for each phase). 

4. Using the bottleneck methodology to calculate the cycle time allocation. 
The methodology (presented above) assesses demand in the entire 
network and balances each direction at each intersection based on its 
accumulated impact (cost) on the network.   

 

This model allows to examine the adaptation of computer agents (e.g. traffic 
lights) according to the JT prioritization methodology (see sections 3,4 in the 
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traffic signal control schemes above). In future tasks we will calibrate the model 
based on the data gained from other simulations and the pilots to study how this 
methodology allows for the adaptation of traffic lights in order to improve urban 
traffic flow.    

This model will be used (in future tasks) to evaluate how the proposed bottleneck 
prioritization method may influence traffic control systems and improve traffic 
flow.  

6.2. CityFlow platform (ETHZ) 
We have also designed other traffic simulation scenarios in another microscopic 
traffic simulator called CityFlow [50]. While SUMO is a versatile traffic software, 
one of the other considerations is fast, computationally efficient simulations that 
can be extended for the purposes of deep reinforcement learning (RL) 
simulations. CityFlow was specifically designed to address this shortcoming of 
using SUMO for RL simulations, achieving up to 20x speedup compared to SUMO 
when using the TRACI python API, however, it does sacrifice some other aspects 
of traffic modeling such as not being able to simulate buses and 
bicycle/pedestrian flows. 

CityFlow was developed primarily for RL studies of traffic signal control. CityFlow 
simulations require the following: 

1. Road network: We used synthetic road networks for initial studies of our 
algorithms (figure 11). However, in future tasks (Task 1.3) we will extend 
our simulations to account for realistic road networks as well.  

2. Vehicle Demands: We use random vehicle OD demands for all possible 
pairs of links on the edges of the grid road networks. 

3. Traffic signal control schemes: Traffic controllers choose from one of the 8 
phases to be active at any given time. A traffic phase consists of compatible 
traffic movements (go straight, turn right, or turn left). The chosen phase 
will have all of its member movements given a green light. We then 
implemented three different traffic signal control schemes: three as 
baselines, and one as our test algorithm. 

a. Random: This traffic controller chooses the active phase at random. 
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b. Actuated: This controller follows a predetermined cyclic order of 
phase activations. The controller chooses to allocate green time to a 
phase according to the vehicle demand experienced by that phase. 

c. Demand: The controller chooses the phases that serve the highest 
vehicle demand. 

d. Analytic+: Analytic+ is an adaptive, self-organizing method that 
relies on optimization and stabilization rules [51].  

 

Figure 11. Synthetic networks for the CityFlow traffic simulations. Left: 2x2 grid network. Right: 4x4 
grid network. Each link is bi-directional, and all intersections have its own traffic signal. 

 

The results of these simulations show that the analytic+ algorithm performs 
better than the three benchmark algorithms (Figure 12). This shows that the self-
organized nature of the Analytic+ algorithm reduces travel times in the synthetic 
network, without any explicit coordination with adjacent intersections. We will 
expand on these results further in Task 1.3, where we can integrate these findings 
into developing reinforcement learning algorithms that are inspired by effective 
self-calibrating models, as well as to further study the resilience and robustness 
of these systems. 
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Figure 12. Average travel times of the two synthetic networks running different control 
algorithms. Lower is better. 

In future tasks, we will use the JT methodology to evaluate the outcome of 
different traffic signal control schemes resulting from this model. By doing so, we 
will be able to estimate what scheme performs better under different constraints, 
types, and volumes of traffic flow.  
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7. Publications for D1.2 
• Serok, N., Havlin, S., & Blumenfeld Lieberthal, E. (2022). Identification, cost 

evaluation, and prioritization of urban traffic congestions and their 
origin. Scientific Reports, 12(1), 13026. 

• Zeng, G., Serok, N., Blumenfeld Lieberthal, E., Duan, J., Li, D., Havlin, S. 
(preprint 2023) Unveiling Fingerprints of Urban Traffic based on Jam 
Patterns.  

• Duan, J., Zeng, G., Blumenfeld Lieberthal, E., Li, D., Serok, N., Huang, H-J., 
Havlin, S., (preprint 2023) Spatio-temporal evolution of traffic congestions: 
an early signal of heavy bottlenecks 
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8. Code repository 
The code of our analysis is available at GitHub: 

https://github.com/nimrodSerokTAU/bottlenecks-prioritization 
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